Спутник ио — самый активный и самый загадочный объект солнечной системы

10 рекордных объектов нашей Солнечной системы

Наши поиски знаний о Вселенной все еще находятся в зачаточном состоянии, и мы регулярно удивляемся новым открытиям. Перед нами еще много тайн, требующих разгадок, даже здесь, в нашем собственном маленьком уголке Вселенной, который мы называем Солнечной системой.

Самая высокая гора

Гора Олимп — это весьма известная марсианская гора, которая по размерам затмевает даже Эверест.

Будучи 21 900 метров высотой, эта вулканическая гора давно рассматривается как самая высокая в нашей солнечной системе.

Тем не менее недавно открытый пик на Весте, одном из крупнейших астероидов нашей звездной системы, официально свергнул Олимп. Рея Сильвия (в честь матери Ромула и Рема) выше горы Olympus Mons на 100 метров.

Конечно, эти измерения не идеально точны. Поскольку разница между горами настолько мала, никто не может с уверенностью заявить, что одна выше другой. Тем не менее Веста, похоже, лидирует.

Хотя мы знали о существовании астероида с 1997 года, только в 2011 году космический аппарат Dawn смог хорошенько рассмотреть его поверхность. Мы узнали, что Рея Сильвия по факту является центральным курганом гигантской воронки.

С диаметром 505 километров, этот кратер почти такой же в длину, как и весь астероид.

Крупнейший астероид

Паллада удерживает звание крупнейшего астероида, но только при определенных обстоятельствах. Во-первых, технически самым большим астероидом остается Церера, хотя ее и перевели в категорию карликовых планет. На долю Цереры приходится около трети всей массы в поясе астероидов (Паллада занимает третье место с 7%).

Также Паллада конкурирует с вышеупомянутой Вестой. Несмотря на то, что Веста выигрывает по массе, Паллада больше по объему.

Тем не менее Паллада может и расстаться со своим титулом, поскольку новые наблюдения Хаббла показали, что она может быть динамической протопланетой.

Это не просто гигантский шар из камня и льда, он переживает внутренние изменения. Возможно, в будущем Паллада станет карликовой планетой.

Крупнейший ударный кратер

В настоящее время на самом деле существует три кандидата, которые могли бы претендовать на звание крупнейшего ударного кратера. Все зависит от того, как быстро меняется наше восприятие Вселенной и как быстро увеличивается багаж наших знаний.

Что примечательно, все три кратера находятся на Марсе. Первый называется Hellas Planitia. С диаметром в 2300 километров, это самый маленький кратер из всех кандидатов. Тем не менее он также единственный кратер, который образовался в результате удара — это мы достоверно знаем.

Тем не менее все данные о Utopia Planitia говорят о том, что этот кратер тоже мог сформироваться в процессе падения тела. С диаметром в 3300 километров, он значительно крупнее Hellas Planitia.

Вполне возможно, что оба этих кратера являются крошечными по сравнению с третьим кратером Солнечной системы. Borealis Basin в диаметре 8500 километров — почти в три раза больше Utopia Planitia.

Тем не менее пока нет подтверждений того, что это ударный кратер.

Если это так, то каким же невообразимым должно было быть событие, приведшее к появлению Borealis Basin? Оно наверняка предоставит ценный взгляд на формирование Марса как планеты.

Самое вулканически активное тело

Вулканическая активность встречается не так часто, как вы могли бы подумать.

Хотя множество небесных тел, включая Марс и даже нашу Луну, демонстрируют признаки древней вулканической активности, есть только четыре тела, вулканическая активность которых была подтверждена.

Кроме Земли, есть еще три вулканических луны: Тритон (спутник Нептуна), Ио (спутник Юпитера) и Энцелад (спутник Сатурна).

Из всех трех самой вулканически активной остается Ио. Изображения, полученные со спутника, выявили около 150 вулканов, а в конечном итоге их может быть и все 400. Это невероятно, если учесть ледяную поверхность Ио и ее расстояние от Солнца.

Ведущая теория, которая может объяснить, как такое холодное место поддерживает горячие недра, заключается в том, что вулканическая активность Ио рождается в процессе внутреннего трения.

Луна постоянно деформируется за счет внешних рычагов — очевидной тяги Юпитера, а также тяги двух крупных лун, Ганимеда и Европы.

Это противостояние создает сильные внутренние приливы, которые создают достаточно трения для генерации тепла, необходимой для поддержания активности вулканов.

Крупнейший объект в Солнечной системе

Представляя 99% массы Солнечной системы, Солнце является ее крупнейшим объектом. Тем не менее в 2007 году, на короткий период, комета стала больше Солнца.

Справедливости ради, отметим, что не сама комета выросла, а ее кома — туманное облако, окружающее ядро кометы пылью и льдом. 17P Holmes была обнаружена в 1892 году астрономом Эдвином Холмсом. С тех пор мы старались держать ее в поле зрения, несмотря на провал в 60 лет между 1906 и 1964 годами.

В целом для комет не является редкостью резкое повышение яркости. Но 23 октября 2007 года комета Холмса внезапно изменила яркость на коэффициент в полмиллиона.

Это была самая крупная вспышка кометы за всю историю, заметная невооруженному глазу (хотя любой бы подумал, что видит звезду).

В течение следующего месяца кома продолжала расширяться, пока не достигла пика диаметра в 1,4 миллиона километров, официально став больше Солнца.

В настоящее время мы пока не знаем точно, почему возникла эта вспышка, поэтому комета Холмса надолго останется загадкой для астрономов.

Самый длинный канал

В 1989 году космический аппарат «Магеллан» был запущен с целью посетить нашего соседнего близнеца Венеру и детально картографировать ее поверхность. Полет аппарата предоставил нам тонну ценной информации о географии злой планеты и в 1991 году открыл самый длинный канал в нашей Солнечной системе. Позже его назвали Baltis Vallis и его длину — около 6800 километров.

Впоследствии было обнаружено, что у Венеры имеется множество таких каналов, хотя ни один из них не был длиннее Baltis Vallis. Отсюда возникла и загадка его появления. На Венере не так много вещей, которые могли бы создать такие каналы в суровых условиях. Давление там в 90 раз больше, чем на Земле, а температура может достигать 462 градуса по Цельсию.

Поэтому основным кандидатом остается лава. Венерианские каналы не особо похожи на земные, но вполне вероятно, что подобные особенности встречались и на нашей планете миллиарды лет назад.

Крупнейшее озеро лавы

Мы уже упоминали, что спутник Юпитера луна Ио — одно из немногих тел в Солнечной системе, обладающее вулканической активностью. Крайне мощной активностью. Расплавленная лава постоянно извергается на поверхности Ио и зачастую приводит к образованию лавовых озер. Одно из них, Loki Patera, представляет собой крупнейшее озеро лавы в нашей звездной системе.

Такие адские достопримечательности можно найти и на Земле, хотя ни одно из них не активно на данный момент.

Самой большой является озеро горы Ньярагонго в Демократической Республике Конго, диаметр которого может достигать 700 метров в диаметре.

Тем не менее географические данные свидетельствуют о том, что вулкан Масая в Никарагуа сформировал еще более крупное озеро лавы в прошлом, диаметром до 1 км.

Все это позволяет нам провести параллель с Loki Patera, поскольку его диаметр — около 200 километров. Второе место занимает Gish Bar Patera с диаметром в 106 километров.

Самые старые астероиды

Несмотря на все наши исследования, мы до сих пор не уверены на 100 процентов в том, как формируются астероиды.

В настоящее время у нас есть две ведущие гипотезы: они могут формироваться как планеты (куски материала, пролетая через космос, сталкиваются с другими кусками и становятся все больше и больше), или же могут быть останками древних планет между Марсом и Юпитером, разрушение которых привело к созданию пояса астероидов.

Наше понимание астероидов улучшилось в 2008 году, когда исследователи из обсерватории на вершине Мауна-Кеа на Гавайях нашли самые старые из известных астероидов в нашей Солнечной системе. Будучи возрастом 4,55 миллиарда лет, эти астероиды намного старше, чем любой из метеоритов, когда-либо падавших на Землю. Они почти так же стары, как наша Солнечная система.

Их возраст оценивается на основе анализа их состава в цветовом спектре, отраженном от их поверхности. Было установлено, что все три астероида невероятно богаты алюминием и кальцием. Этих элементов в них куда больше, чем в любом космическом каменном объекте, который мы когда-либо видели.

Комета с самым длинным хвостом

Комета Хиякутаке, также известная как Великая комета 1996 года, отличается самым длинным хвостом. Термин «великая комета», в принципе, используется для обозначения комет, которые становятся очень яркими и хорошо видны невооруженным глазом.

Когда Хиякутаке прошла мимо нас в 1996 году, она стала самой близкой кометой из всех, пролетавших мимо Земли за последние десять лет. Как и ожидалось, комету «облепили» астрономы и фотографы-любители, наслаждаясь великолепным зрелищем. Тем не менее никто не ожидал, что хвост вырастет таким длинным — 560 миллионов километров.

Предыдущий рекорд принадлежит Великой комете 1843 года. Тогда ее хвост был в 2 а. е. в длину, что эквивалентно 300 миллионам километров.

Помимо рекорда, Хиякутаке также предоставила нам ценную информацию о формировании Солнечной системы. Химический анализ показал, что комета содержит этан и метан. Впервые эти газы были обнаружены в комете, тем самым допустив существование по меньшей мере двух разных типов комет.

Самое загадочное погодное явление

Никого не удивит, что самый странный пример погоды в Солнечной системе мы нашли на самой большой планете Солнечной системы. Большинство людей уже знакомы с гигантской бурей на Юпитере, известной как Большое Красное Пятно.

Тем не менее любой, кто видел изображение Юпитера, также признает еще одну отличительную черту — две красные полосы, пересекающие планету параллельно друг другу. В мае 2010 года что-то странное случилось с нижней полосой, известной как Южный экваториальный пояс — он исчез.

Это застало астрономов врасплох — никто не имел ни малейшего представления, почему так произошло. Было сформировано несколько гипотез, когда в ноябре 2010 года полоса начала возвращаться.

Инфракрасные снимки показали, что пояс восстанавливал свой красновато-коричневатый цвет, и астрономы пришли к более-менее вразумительным выводам: белые облака из ледяного аммиака поплыли на большей высоте, чем бурые облака, просто скрыв их из виду.

Это явление, кажется, имеет место раз в несколько десятилетий, и, как правило, длится в течение года или около того. Конечно, еще многое предстоит узнать о том, почему так происходит. Насколько нам известно, в Солнечной системе это единственный пример такого явления. Кроме того, Северный пояс Юпитера таким изменениям не подвергается. Вот и думай теперь.

Источник: https://Hi-News.ru/space/10-rekordnyx-obektov-nashej-solnechnoj-sistemy.html

Самые странные спутники солнечной системы

Среди спутников планет в солнечной системе попадаются самые удивительные: Европа покрыта полностью океаном, на Ио царит настоящий вулканический ад, Эпиметей и Янус постоянно гонятся друг за другом, время от времени меняясь местами…

Наша солнечная система состоит в основном из Солнца и восьми планет. Разумеется, людей в первую очередь завораживают соседи Земли – Марс, Юпитер, Сатурн… Однако луны, вращающиеся вокруг них, тоже довольно интересны.

Титан за кольцами Сатурна 

10. Ганимед – самый большой спутник

На первый взгляд, Ганимед очень похож на нашу Луну, однако размеры обоих спутников несопоставимы. Ганимед – крупнейший спутник Юпитера, да и всей солнечной системы. У него даже есть собственные магнитные полюса – уникальный случай для планетарных спутников.

Если бы Ганимед вращался вокруг Солнца, его можно было бы счесть за полноценную планету: юпитерианская луна на 8% крупнее Меркурия и по размеру составляет 3/4 Марса.

Ганимед 

9. Миранда – гадкий утенок

Спутники Урана вообще не отличаются особой красотой, однако Миранда среди них действительно гадкий утенок. Кажется, будто творец всех лун солнечной системы под конец слепил вместе оставшийся после трудового дня мусор и запустил его комком на орбиту Урана.

Однако если людям когда-нибудь удастся прилуниться на этом спутнике, их глазам откроются зрелища, невиданные в космосе. Миранда обладает наиболее разнообразным ландшафтом в солнечной системе: гигантские хребты чередуются с глубокими равнинами, а многие каньоны в 12 раз глубже знаменитого Гран-Каньона.

Миранда 

8. Каллисто – рекордсмен по кратерам

Другая юпитерианская луна – Каллисто – больше всего напоминает лицо прыщавого подростка. На Каллисто нет никакой геологической активности, что само по себе делает ее уникальной в солнечной системе, поэтому кратеры, появившиеся в результате падения метеоритов, постоянно накладываются друг на друга.

Очень трудно найти нетронутый уголок на Каллисто, весь спутник покрыт сетью кратеров, что делает его рекордсменом в солнечной системе.

Каллисто (внизу и слева), Юпитер (наверху и справа) и Европа (ниже и левее Большого Красного Пятна) 

7. Дактиль – спутник астероида

Дактиль – самый маленький спутник в солнечной системе, его длина составляет примерно 1,6 км. Это также одна из немногих лун, вращающихся вокруг малых планет – астероидов.

В греческой мифологии Идой называли гору, в которой жили крошечные существа, дактили (пальчики). Поэтому логично, что спутник астероида Ида получил такое название.

Астероид Ида и его спутник Дактиль

6. Эпиметей и Янус – вечная гонка

Эпиметей и Янус – два спутника Сатурна, которые движутся практически по одинаковым орбитам, вероятно потому что в незапамятные времена они составляли единое целое. При этом каждые четыре года они меняются местами, каждый раз, чудом избегая столкновения.

Эпиметей и Янус 

Читайте также:  Парабеллум — подробный обзор немецкого пистолета

5. Энцелад-кольценосец

Энцелад – один из крупных внутренних спутников Сатурна. Поверхность Энцелада отражает практически весь падающий на него солнечный свет, поэтому эта сатурнианская луна считается самым рефлектирующим космическим телом в солнечной системе.

Энцелад также обладает гейзерами, выбрасывающими водяной пар и пыль в открытый космос. Исследователи считают, что именно благодаря вулканической деятельности своего спутника Сатурн обзавелся кольцом Е, через которое проходит орбита Энцелада.

Кольцо Е и Энцелад 

4. Тритон – спутник с ледяными вулканами

Тритон – крупнейший спутник Нептуна. Это также единственный спутник в солнечной системе, который вращается вокруг своей планеты в направлении, обратном ее движению вокруг Солнца.

У Тритона имеется множество вулканов, но в отличие от обычных, выбрасывающих лаву, вулканы этой нептунианской луны выкидывают воду и аммиак, которые немедленно замерзают при очень низких внешних температурах.

Тритон – очень яркое небесное тело, поскольку его ледяная поверхность отражает большую часть солнечного света.

Тритон 

3. Европа – спутник-океан

Европа является еще одним спутником Юпитера и это обладатель самой гладкой поверхности в солнечной системе. Дело в том, что вся Европа покрыта океаном с толстой коркой льда на поверхности.

Однако подо льдом находится гигантское количество воды, которая нагревается благодаря внутреннему ядру спутника и постоянным приливным течениям, вызванным гравитационным притяжением Юпитера. Достаточно сказать, что океан Европы содержит в себе в 2-3 раза больше воды, нежели все земные океаны вместе взятые.

По расчетам некоторых ученых, океанские воды Европы могут иметь настолько высокую температуру, что совсем не исключается появление жизни на этой юпитерианской луне. Причем, речь идет не о бактериях, а о гораздо более сложных и крупных формах жизни.

Европа 

2. Ио – вулканический ад

Постоянное приливное гравитационное воздействие планеты-гиганта Юпитера вызывает регулярный нагрев недр его спутника Ио, что в свою очередь приводит к непрекращающейся вулканической деятельности.

Вся поверхность Ио покрыта вулканами, в настоящее время насчитывается более 400 действующих. Извержения происходят настолько часто, что пролетавшему вблизи спутника космическому аппарату «Вояджер» удалось заснять некоторые из них.

При этом на Ио практически невозможно увидеть кратеров – извергающаяся лава немедленно заполняет их.

Ио 

1. Tитан – лучший кандидат на колонизацию

Титан – пожалуй, самый странный спутник в солнечной системе. Уже давно было известно, что он обладает атмосферой, причем более плотной по сравнению с земной. В титановой атмосфере преобладает азот, однако есть и другие газы, например, метан.

Долгое время оставалось загадкой, что скрывается под густыми титановыми облаками. Однако снимки, сделанные с аппарата «Кассини-Гюйгенс» в 2005 году доказали наличие метан-этановых озер и рек.

Ученые предполагают также существование подземных водоемов, что вкупе с низкой гравитацией, делает Титан лучшим кандидатом на земную колонизацию из всех спутников в солнечной системе.

Верхние слои атмосферы Титана и южный полюс Сатурна

Источник

Источник: https://vseonauke.com/1521525882386385676/samye-strannye-sputniki-solnechnoj-sistemy/

Ио, спутник Юпитера — ад наяву

Ио, спутник Юпитера, названный по имени любовницы бога Зевса, представляет собой удивительно интересный и смертельно опасный мир, который скорее можно назвать воплощением ада. Ио относится к четырем галилеевым спутникам, и все они очень отличаются друг от друга, и каждый из них представляет собой особый мир, способный поразить даже очень богатое воображение. Ио тоже не исключение.

Немного любопытных фактов об Ио

Землетрясения и извержения вулканов даже на Земле выглядят устрашающе, а она куда как больше этого небольшого спутника, имеющего диаметр всего в 1131 км. Однако это самый активный в геологическом плане объект Солнечной системы! Всяческие катаклизмы там происходят постоянно, множество вулканов извергаются, а ландшафт постоянно меняется.

Пейзаж Ио

Ио из всех галилеевых спутников расположен ближе всех к Юпитеру – расстояние от него всего 422 тысячи километров, немного больше, чем от Земли до Луны. Сформировался же он в основном из силикатных пород и железа, имеет горячее железное ядро. Кстати, в этом его отличие от большинства других спутников, которые обычно представляют собой мертвый кусок камня или льда.

Под действием Юпитера и других крупных спутников Ио буквально корежит, а недра его постоянно разогреваются. Если небольшая Луна вызывает своей гравитацией на Земле приливы и отливы, то можно представить, какие катаклизмы вызывает на Ио такой гигант, как Юпитер.

Галилеевы спутники Юпитера. Ио — справа.

Вот лишь несколько самых любопытных фактов:

Ио, спутник Юпитера, при своем небольшом размере имеет очень большие горы. Гора Южная Боосавла вдвое выше земной Джомолунгмы. И такие горы появляются из-за сжатия коры спутника.

На Ио постоянно происходят извержения вулканов, из-за приливного действия Юпитера и других спутников. Вулканы извергают серу и её соединения на высоту до 500 км. Мало того, следы серы с Ио обнаруживаются и на орбите спутника, и даже на других спутниках, например, на Европе, она имеется прямо на ледяной поверхности.

Извержения вулканов на Ио, спутнике Юпитера

Извержения вулканов порождают потоки лавы, растекающиеся на 500 км от вулканов.

Из-за преимущественно серного состава поверхность Ио имеет причудливые цвета. А благодаря обильному истечению лавы и пеплу ландшафт его постоянно меняется.

Плюс регулярные землетрясения могут воздвигнуть горы там, где их до этого не было, и сравнять там, где они были.

Эти же извержения создают тонкую атмосферу вокруг Ио, в которой, кстати, иногда бывают и полярные сияния.

Извержение в патерах Тваштара, снятое аппаратом «Новые горизонты» в 2007 году.

Температура на поверхности – около -200 градусов, зато на вершинах вулканов может достигать 3000 градусов. Снег из диоксида серы – типичное явление.

Так что спутник Юпитера Ио – очень зловещий, опасный, но по-своему красивый и очень любопытный мир. Это мир огня и серы, как типичный ад, только в реальности.

Кроме Ио и Земли, действующих вулканов пока не обнаружено нигде в Солнечной системе.

Открытие Ио, спутника Юпитера

Когда Галилео Галилей 7 января 1610 года навел свой самодельный телескоп на Юпитер, он обнаружил всего три спутника. Ио и Европа слились в один объект, и Галилей не смог их рассмотреть. Однако уже на следующий день он ясно увидел, что спутников все-таки четыре, поэтому датой открытия Ио считается 8 января 1610 года.

Кстати, Галилей назвал этот спутник Юпитером I, и лишь немного позднее Симон Марий дал ему нынешнее название, поддержав предложение Иоганна Кеплера называть все спутники Юпитера в честь любовниц бога Зевса (Юпитера). Правда, названия эти тогда не прижились, и лишь в середине 20 века спутник Ио снова стали так называть – до этого он так и был Юпитером I.

Любопытно, что, согласно мифам, Зевс изнасиловал юную Ио, а потом превратил её в корову, чтобы про сей факт не узнала жена – Гера.

Наблюдение Ио

После открытия этого спутника два века подряд ни один астроном не смог увидеть на нем никаких деталей. Лишь на рубеже 19-20 веков появились достаточно мощные инструменты, которые позволили что-то увидеть.

Плюс спектрографические и другие исследования помогли кое-что узнать о природе Ио и подтвердить вулканическую активность.

Основные данные и качественные фотографии были получены лишь благодаря космическим зондам и телескопу

Обычный любитель астрономии, вооруженный гораздо более скромными инструментами, увидит Ио лишь как звезду. Кстати, уже в 8-10-кратный бинокль Ио можно прекрасно увидеть, когда спутник находится на достаточном расстоянии от Юпитера и не сливается с ним. В телескоп, даже довольно скромный, различить все 4 галилеевых спутника вообще не представляет труда.

80-мм рефрактор с качественной оптикой позволяет наблюдать прохождение теней от спутников по диску Юпитера. Более крупный инструмент даст возможность увидеть разницу в резкости этих теней.

Можно видеть этот процесс более крупным планом, что довольно интересное занятие. Иногда удается увидеть двойное или даже тройное прохождение теней.

Так же можно увидеть оттенок спутника – у Ио он желтый благодаря обилию серы.

Прохождение спутника на фоне Юпитера

Во время противостояния можно увидеть одновременно прохождение самого спутников и их теней по диску Юпитера. Наблюдать их на фоне неба гораздо сложнее, из-за неполной фазы и темного фона.

Источник: https://astro-world.ru/io-sputnik-yupitera/

Спутник Марса – самое загадочное небесное тело солнечной системы

Спутник Марса Фобос, по мнению ряда ученых, самое таинственное небесное тело Солнечной системы, стал еще загадочнее после обнаружения на нем лет несколько назад странного вертикального объекта. Что это, непонятно до сих пор.

По справедливому предположению второго в истории астронавта, ступившего на Луну, Базза Олдрина, когда люди об этом узнают, они первым делом спросят, кто его оставил.

По предположению ученых, монолит вблизи – это крупная каменная глыба высотой до 90 м. Его положение в середине пустынной равнины делает артефакт особенно заметным.

На самом Марса тоже есть монолит, который ученые считают каменным обломком с относительно правильной формой, скорее всего скатившимся с ближней горы.

Другие знаменитые артефакты типа «парящей ложки» и «египетской пирамиды» ученые считают следствием естественного процесса эрозии.

Ряд ученых считает Фобос самым таинственным небесным телом Солнечной системы. Марс имеет пару спутников, второй – Деймос. Оба отличают небольшие размеры, неправильная форма, внешнее сходство с астероидами, которые могли попасть в гравитационное поле Марса.

Но, судя по особенностям орбит, такая гипотеза маловероятна.

Другое объяснение, об образовании обоих спутников из такого же материала, как Марс, опровергается точными астрономическими измерениями плотности Фобоса, гораздо меньшей, чем имеет типичная марсианская порода.

По третьей версии, спутники Марса могли появиться в результате его столкновения с большой протопланетой. Но тогда Фобос с Деймосом должны были оказаться значительно крупнее.

Пара новейших исследований поддерживают гипотезу столкновения. Одно приводит дополнительные вычисления, говорящие о том, что это не астероиды, второе объясняет, почему спутников всего пара, и таких маленьких.

По одной из новейших версий, столкновение действительно было и результатом стало появление действительно крупного спутника. Его гравитационное взаимодействие с Марсом превратило оставшийся космический мусор в спутники поменьше, в том числе Фобос с Деймосом. Крупный спутник и все прочие кроме двух оставшихся упали на Марс.

Новую гипотезу сможет подтвердить или отвергнуть планируемое исследование Фобоса. В прошлом году НАСА предположило, что Фобос может постепенно разрушаться, чему могут свидетельствовать борозды на нем. Времени для того, чтобы долететь до Фобоса, пока хватает: по оценкам ученых, совсем он не разрушится еще 30-50 млн лет.

Источник: http://mks-onlain.ru/news/sputnik-marsa-samoe-zagadochnoe-nebesnoe-telo-solnechnoj-sistemy/

Самые большие спутники планет в Солнечной системе

Спутник — это плотный естественный объект, который вращается вокруг планеты. Никакое конкретное научное объяснение не дает удовлетворительного ответа на вопрос о том, как появились спутники, хотя существует несколько теорий.

Луна считалась единственным спутником, но после изобретения телескопа были обнаружены спутники других планет Солнечной системы. Каждая планета имеет один или несколько спутников, кроме Меркурия и Венеры. У Юпитера наибольшее количество спутников — 67.

Технологические достижения позволили человеку обнаружить и даже отправить космические аппараты в экспедиции к другим планетам и их спутникам.

Самыми большими спутниками в нашей Солнечной системе являются:

Ганимед

Ганимед — крупнейший спутник в нашей системе, вращающийся вокруг Юпитера. Его диаметр 5 262 км. Спутник превосходит по размерам Меркурий и Плутон, и его с легкостью можно было назвать планетой, если бы он вращался вокруг Солнца. Ганимед обладает собственным магнитным полем.

Его открытие осуществил итальянский астрономом Галилео Галилей 7 января 1610 года. Орбита спутника находится на расстоянии около 1 0700 400 км от Юпитера, и ему требуется 7,1 земных дня, чтобы завершить свою орбиту. Поверхность Ганимеда имеет два основных типа пейзажей.

На нем есть более светлые и молодые регионы, а также более темная кратерная область. Атмосфера спутника тонкая и содержит кислород в дисперсных молекулах. Ганимед в основном состоит из водяного льда и горной породы, и предположительно имеет подземные океаны.

Название спутника происходит от имени принца в древнегреческой мифологии.

Титан

Титан — спутник Сатурна, диаметром 5 150 км, что делает его вторым по величине спутником в Солнечной системе. Он был открыт голландским астрономом Христианом Гюйгенсом в 1655 году. Спутник обладает плотной атмосферой, похожей на земную. На 90% атмосфера состоит из азота, а на остальные 10% приходятся метан, незначительное количество аммиака, аргона и этана.

Титан делает полный оборот вокруг Сатурна за 16 дней. На поверхности спутника присутствуют моря и озера, заполненные жидкими углеводородами. Это единственное космическое тело в Солнечной системе, кроме Земли, которое имеет водные объекты. Название спутника взято из древнегреческой мифологии, в честь древних богов, называемых титанами.

Лед и порода составляют основную часть массы Титана.

Каллисто

Каллисто — второй по размерам спутник Юпитера и третий в рейтинге самых больших спутников Солнечной системы. Он имеет диаметр 4821 км и, по оценкам ученых, ему около 4,5 млрд лет; его поверхность в основном испещрена кратерами.

Читайте также:  Охотничье помповое ружье бекас, обзор модификаций

Каллисто был открыт Галилео Галилеем 7 января 1610 года. Свое название спутник получил в честь нимфы из древнегреческой мифологии. Каллисто вращается вокруг Юпитера на расстоянии около 1 882 700 км, и завершает свою орбиту за 16,7 земных дня.

Это самый удаленный от Юпитера спутник, а это означает, что он не был в значительной степени подвержен мощной магнитосфере планеты. Водяной лед, а также другие материалы, такие как магний и гидратированные силикаты составляет большую часть массы спутника.

Каллисто имеет темную поверхность, и предполагается, что под ней находится соленое море.

Ио

Ио — третий по величине спутник Юпитера и четвертый в Солнечной системе. Его диаметр равен 3 643 км. Первым спутник обнаружил Галилео Галилей в 1610 году. Это самое вулканически активное космическое тело наряду с Землей. Его поверхность в основном состоит из пойм жидких пород и лавовых озер.

Ио расположен примерно в 422 000 км от Юпитера, и делает полный оборот вокруг планеты за 1,77 земных дня. Спутник имеет пятнистый вид с доминированием белого, красного, желтого, черного и оранжевого цветов. В атмосфере Ио преобладает двуокись серы. Спутник был назван в честь нимфы из древнегреческой мифологии, которая была соблазнена Зевсом.

Под поверхностью Ио находится железное ядро и внешний слой из силикатов.

Другие крупные спутники

К другим большим спутникам Солнечной системы относятся: Луна (3 475 км), Земля; Европа (3 122 км), Юпитер; Тритон (2 707 км), Нептун; Титания (1 578 км), Уран; Рея (1 529 км), Сатурн и Оберон (1,523 км), Уран.

Большинство наблюдений за этими спутниками проводятся с Земли.

Развитие технологий дает возможность ученым отправлять космические аппараты в разные уголки Солнечной системы, чтобы получить больше информации о планетах и их спутниках.

Таблица: ТОП 10 самых больших спутников в Солнечной системе

Место в рейтинге Спутник, Планета Средний диаметр
1 Ганимед, Юпитер 5 262 км
2 Титан, Сатурн 5 150 км
3 Каллисто, Юпитер 4 821 км
4 Ио, Юпитер 3 643 км
5 Луна, Земля 3 475 км
6 Европа, Юпитер 3 122 км
7 Тритон, Нептун 2 707 км
8 Титания, Уран 1 578 км
9 Рея, Сатурн 1 529 км
10 Оберон, Уран 1 523 км

Источник: https://natworld.info/raznoe-o-prirode/samye-bolshie-sputniki-planet-v-solnechnoj-sisteme

7 чудес Солнечной системы

Самое удивительно чудо Солнечной системы — это, несомненно, Земля, планета, где смогла зародиться жизнь. Но помимо Земли в нашей системе есть и множество других необычных объектов и явлений, ничего подобного которым на нашей планете нет. Предлагаем вам прочитать о семи чудесах Солнечной системы.

1. Жидкие гейзеры Энцелада

В 2009-м году «Кассини», космический аппарат НАСА, совершил полёт вокруг Сатурна. Во время полёта мимо одной из его внешних лун — Энцелада — аппарат смог сфотографировать нечто необычное.

Дело в том, что большинство планетарных спутников в Солнечной системе в геологическом смысле мертвы — иными словами, в их недрах не происходит каких-либо процессов.

Что касается Энцелада, то на его поверхности удалось обнаружить гигантские трещины, из которых в открытый космос со скоростью 2250 км/ч вырываются гейзеры воды и льда высотой до сотни км.

Энцелад

Жидкая вода вырывается на поверхность и почти сразу замерзает, образуя снег и частички льда — такое явление получило название криовулканизма.

Надо отметить, что такое явление наблюдается только на южном полюсе спутника Сатурна, где присутствуют узкие разломы в планетарной коре, получившие название «тигровые полосы».

Причины того, что же настолько отличает Энцелад от других лун и какие процессы происходят в его недрах, пока неизвестны. Однако исследователи считают, что на Энцеладе должны быть два источника тепла, вызывающие криовулканизм.

Одним источником могут быть радиоактивные элементы, распадающиеся и нагревающие недра луны, помогая тем самым воде оставаться в жидком состоянии.

Вторым же источником может быть приливный нагрев: Энцелад вращается вокруг Сатурна по эллиптической орбите, поэтому он то приближается к Сатурну, то удаляется от него.

Когда спутник оказывается недалеко от Сатурна, гравитационное притяжение планеты вызывает более сильные приливные растягивания Эцелада, что приводит к трению материи в его недрах и высвобождению энергии, а это, в свою очередь, способствует таянию льдов внутри спутника и поддерживает воду в жидком состоянии.

Самое интересное в этом вопросе то, сколько же воды содержится под поверхностью Энцелада — там вполне может оказаться глубокий океан. Возможно, океан не занимает всё пространство недр луны, он может быть только в тех местах, где извергаются гейзеры. А в жидком океане при достаточной температуре вполне могут зародиться живые организмы.

2. Стена Япета

Стена Япета — уникальный объект, подобного которому в Солнечной системе нет. Он представляет собой горный хребет общей протяжённость 1300 км, опоясывающий Япет по экватору и делящий спутник на две почти одинаковые половинки, благодаря чему Япет немного напоминает по форме грецкий орех. Высота хребта достигает 13 км, а ширина — 20 км.

Япет

Разумеется, причины происхождения хребта неизвестны.

Существует множество гипотез: одна из них состоит в том, что раньше Япет был так называемой «двойной луной» — будучи сам спутником Сатурна, Япет мог иметь собственный спутник, вращавшийся вокруг него по круговой орбите.

Постепенно этот объект притягивался к Япету под воздействием его гравитации, после чего гравитационные силы разорвали объект на части, превратив его в кольца, которые затем упали на поверхность Япета, сформировав горную гряду.

Другая гипотеза объясняет возникновение Стены тектоническими процессами, некогда происходившими на спутнике. Например, Япет изначально мог не иметь сферической формы, но по каким-то причинам скорость его вращения замедлилась, и в результате он стал сферой. Площадь спутника сократилась, а оставшееся вещество скопилось в районе экватора, образовав горы.

Третья гипотеза связана с «двуликостью» Япета. Дело в том, что поверхность Япета — неоднородна: на снимках, сделанных «Кассини», видно, что Япет почти по меридиану «разделён» на две половины — светлую и тёмную. Граница этих участков очень резкая, они не переходят плавно один в другой.

Вероятно, ранее Япет был ледяным спутником, что объясняет состав его светлой стороны, а тёмная сторона — это космическая тёмная пыль, оседающая на его ведущем полушарии. Исследователи полагают, что возникновение Стены может быть каким-то образом связано с неоднородной окраской Япета.

3. Вулканы Ио

Спутник Юпитера Ио — наиболее геологически активный объект Солнечной системы: на поверхности Ио находится более 400 действующих вулканов, постоянно извергающих из недр луны потоки лавы. В некоторых случаях извергаемые раскалённые фонтаны из серы и диоксида серы поднимаются на высоту 500 км от точки выброса, а лавовые потоки на поверхности Ио достигают 500 км в длину.

Ио

Благодаря постоянным извержениям, Ио очень красив — поверхность его раскрашена в различные оттенки жёлтого, белого, красного, чёрного и зелёного. Кроме того, магма может вырываться из недр не только посредством вулканов, но и просто вытекать из многочисленных трещин в коре луны.

Вероятно, такая вулканическая активность обусловлена периодическим нагревом недр Ио, связанных с воздействием гравитационных сил Юпитера и двух других крупных спутников планеты-гиганта — Европы и Ганимеда, а также тем, что под поверхностью Ио находится гигантский океан магмы в несколько десятков км глубиной.

4. Кольца Сатурна

Кольца, названные в алфавитном порядке (от A до E), — одно из самых красивых явлений в Солнечной системе.

Зонд «Кассини» во время своей исследовательской миссии сумел сделать макросъёмку колец Сатурна, благодаря чему удалось узнать, из чего состоят кольца и что находится внутри них.

Считается, что помимо семи главных, ярко выраженных колец, существуют тысячи колец поменьше, состоящие из льда и пыли, воды в которых приблизительно в 26 млн раз больше, чем на Земле.

Сатурн

Исследователи до сих пор не знают, как образовались кольца Сатурна. Возможно, они состоят из материала, которому когда-то не удалось сформироваться в луну из-за воздействия гравитационных полей планеты-гиганта.

Или, возможно, кольца раньше были луной, слишком приблизившейся к Сатурну и распавшейся из-за приливных гравитационных сил планеты.

Есть даже теория, что кольца — это остатки кометы, подлетевшей к Сатурну слишком близко и разорванной воздействием гравитации.

Кроме того, фотографии, сделанные «Кассини» в 2009-м году, показали, что кольца, ранее считавшиеся твёрдыми и плоскими, содержат в себе «хребты» высотой от двух м до пяти км.

Исследователи полагают, что эти неровности возникли из-за того, что прямо внутри колец вокруг Сатурна вращается до 62-х мелких лун, которые, двигаясь фактически сквозь кольца, порождают смещения частиц, поскольку орбиты лун не совсем совпадают с орбитой самих колец.

В кольце, А, например, самом дальнем от Сатурна, луна Дафнис стала причиной возникновения вертикального пика, высота которого превышает четыре км.

5. Большое красное пятно на Юпитере

Большое красное пятно на Юпитере — это огромных размеров шторм, бушующий на гигантской планете. Этот шторм по своим размерам в три раза больше Земли. Причин возникновения учёные точно не знают — пятно было там всегда, с момента начала наблюдений за планетой. Его наблюдали астрономы ещё во второй половине XVII-го века, но, возможно, оно возникло гораздо раньше.

Юпитер

Древний ураган уже столетия бушует на Юпитере с бешеной скоростью — гигантская воронка вздымается почти на восемь км над облачным покровом планеты. Скорость ветров в Большом красном пятне составляет 640 км/ч.

Большинство тропических ураганов в южном полушарии Земли закручиваются по часовой стрелке вслед за вращением планеты, на Юпитере же Большое красное пятно, также находящееся в южном полушарии, закручивается против часовой стрелки из-за высокого давления.

Недавно телескоп «Хаббл» сфотографировал на Юпитере три бури поменьше — учёные назвали их Белыми пятнами из-за их цвета. За три года наблюдений пятна слились воедино, образовав один ураган величиной с Землю.

Затем примерно за неделю ураган резко изменил свой цвет — из белого стал ярко-красным, благодаря чему получил название Малого красного пятна.

Причины явления до сих пор остаются загадкой, но, возможно, Большое красное пятно возникло столетия назад аналогичным образом.

Астрономы предполагают, что раньше оно тоже было белым, но по мере увеличения скорости ветров начало «всасывать» частички материи с поверхности планеты и выбрасывать их в атмосферу Юпитера. Одним из соединений в Красных пятнах может быть разновидность серы. Красный цвет также можно объяснить присутствием веществ, вступающих в реакцию с солнечным светом и придающих ураганам такую окраску.

За последние десятилетия с Большим красным пятном произошли некоторые перемены: Оно стремительно съёживается и становится круглее, так что, возможно, когда-нибудь оно полностью исчезнет.

6. Пояс астероидов

О возникновении пояса астероидов почти ничего неизвестно. Возможно, осколки остались после образования Солнечной системы.

Долгое время исследователи считали, что на месте пояса астероидов раньше могла быть планета, под воздействием каких-то процессов прекратившая своё существование, а пояс — всё, что от неё осталось.

Теперь же учёные понимают, что планета там образоваться не могла — из-за гравитационного притяжения Юпитера и других планет материя не имела возможности собраться в планету.

Протяжённость пояса астероидов — несколько сотен км, диаметр некоторых камней — не больше пары м, другие же крупнее города. В этом поясе находятся, вероятно, миллионы объектов, однако, если бы возможно было соединить их все в один, то он оказался бы меньше нашей Луны.

Как ни странно, если космический корабль когда-нибудь полетит сквозь пояс астероидов, то астронавты увидят не летящие на них с бешеной скоростью камни, а далёкие светящиеся точки, поскольку среднее расстояние между большинством астероидов в поясе намного больше их реальных размеров. Среднее расстоянии между двумя объектами может превышать полтора млн км.

Церера

Почти все астероиды обладают неправильной формой, но есть среди них и почти идеально круглый шар — Церера, крупнейший астероид в Солнечной системе диаметром 950 км. Масса Цереры составляет почти четверть от общей массы всех астероидов в поясе. Благодаря своей сферической форме Церера занесена в список карликовых планет, к которым также относится, например, Плутон.

Астероиды представляют потенциальную опасность для жизни на нашей планете: если один из них когда-либо упадёт на Землю, это станет причиной масштабных разрушений, но только в том случае, если астероид окажется достаточно велик.

14 апреля 2010-го года над средним западом в США пронёсся пылающий астероид 90 см в диаметре. К счастью, объект распался на крошечные кусочки до того, как врезался в Землю.

Но в прошлом из-за столкновения с астероидами на Земле возникали огромные кратеры, которые до сих пор можно увидеть в США, Австралии, Канаде.

Считается также, что именно из-за падения астероида погибли динозавры — тогда объект диаметром 10 км упал на нашу планету на месте современной Мексики.

7. Вулкан Олимп на Марсе

Ширина основания горы Олимп — 540 км, поэтому, даже несмотря на поразительную высоту — 20 км — её склоны очень покатые. Олимп расположен в провинции Фарсида — регионе Марса, где есть и другие большие вулканы. Если взойти на вершину Олимпа, то можно оказаться в верхних слоях марсианской атмосферы.

Марс

Олимп постепенно возник миллиарды лет назад — одно извержение следовало за другим, и всё новые и новые потоки лавы застывали друг поверх друга.

Олимп стал крупнее любой горы на Земле по нескольким причинам: из-за сильнейшей вулканической активности и того, что сила притяжения на Марсе намного слабее, чем на нашей планете, поэтому, вырастая, гора не «оседала» под собственным весом.

Кроме того, на Марсе, в отличие от Земли, нет тектонических плит: горячий кратер, из которого извергалась лава, всё время оставался на одном месте, что позволило материалу накапливаться.

Считается, что сейчас на Марсе нет геологической активности, но недавно были получены подробные фотографии лавовых потоков Красной планеты.

Некоторым потокам более 115-ти млн лет, но другим — всего два млн лет, что по геологической шкале времени можно назвать недавними событиями, и это позволяет предположить, что некоторая вулканическая активность на Марсе всё же есть до сих пор.

А на склонах Олимпа в лавовых потоках очень мало кратеров — это означает, что этим потокам максимум 20 млн лет.

Источник

Источник: https://p-i-f.livejournal.com/4733177.html

Ио спутник Юпитера

Ио – спутник Юпитера. Его диаметр составляет 3642 километра. Название спутника происходит от имени Ио (жрица Геры — древнегреческая мифология).

Загадочное небо влечет взгляды человека с тех пор, как он стал осознавать себя, как существо мыслящее. По разным причинам: сначала, вероятно, было удивление и изумление. Небо воспринималось, как что-то непонятное, волнующее, затем пугающее, приносящее иногда несчастья.

Затем приносящее надежду. А потом взоры обращались на небесную сферу с целью познания и изучения. В своем познании человечество продвинулось совсем ненамного, если мерить мерками Вселенной. Относительно хорошо мы исследовали свою Солнечную систему.

Но еще осталось множество загадок, которые следует разгадать.

Сегодняшний разговор пойдет о спутниках планет нашей системы. Самые интересные и загадочные Луны у планеты Юпитер, впрочем, как и сама планета. Известны на данный момент 79 спутников Юпитера и только четыре из них открыл знаменитый Галилео Галилей. Все они разные и интересны по-своему.

История открытия

Но самой загадочной является Ио – Галилео Галилей впервые открыл ее в 1610 году и назвал ее Юпитер I. Одно то, что планета активна и на ней до сих пор идет вулканическая деятельность, привлекает астрономов планеты Земля.

Читайте также:  Отечественное ружьё мр-153 для охоты

И притом деятельность эта довольно бурная. Девять действующих вулканов на ее поверхности выбрасывают в атмосферу вещества на 200 км и более – такой мощи можно позавидовать.

В нашей Солнечной системе только две планеты имеют вулканическую деятельность – Земля и спутник Юпитера Ио.

Чем интересен спутник

Нажмите на картинку чтобы перейти на интерактивный глобус Ио

Но не только вулканами знаменит Ио, недра разогреваются радиоактивной деятельностью и электричеством. Мощные токи внутри спутника возникают за счет большого магнитного поля и образующихся сильнейших приливов под воздействием Юпитера.

Внешний вид планеты очень красив, сочетание красного, желтого, коричневого, дает мозаичную живую картинку. Так же как и Луна, Ио обращена к Юпитеру всегда одной стороной.

Средний радиус планеты составляет 1131, 7 км, расстояние до Юпитера – 422000 км.

Наблюдение за спутником Ио

Галилео Галилей наблюдал за Ио 7 января 1610 года. Спутник был обнаружен с помощью первого в мире телескопа-рефрактора. Первое мнение астронома было ошибочное и показало спутник как один элемент с Европой. На второй день ученый рассмотрел спутники раздельно. Таким образом, дата 8 января 1610 года считается датой открытия Ио.

Основные исследования Ио

Юпитер и Ио, снимок Вояджера-1

Планета активно изучается: первые данные о ней были получены в 1973 году с космического аппарата Пионер. «Пионер-10» и «Пионер-11» пролетали возле спутника 3 декабря 1973 года и 2 декабря 1974 года.

Была уточнена масса и получены характеристики плотности, которая превышала все спутники, открытые ученым Галилео. Был обнаружен радиационный фон и незначительная атмосфера. Позже исследование Ио продолжат «Вояджер-1» и «Вояджер-2», которые пролетят мимо спутника в 1979 году.

За счет более современной аппаратуры с усовершенствованными характеристиками, были получены улучшенные снимки спутника. Снимки с «Вояджера-1» показали наличие вулканической активности на поверхности спутника. «Вояджер-2» изучил спутник 9 июля 1979 года.

Были изучены изменение вулканической активности, за время исследования спутника аппаратом «Вояджер-1».

Аппарат «Галилео» пролетел возле Ио 7 декабря 1995 года. Он сделал множество снимков поверхности Ио, а также открыл железное ядро. Миссия «Галилео «была закончена 23 сентября 2003 года, аппарат сгорел в атмосфере Юпитера. Корабль Галилео передал на Землю фотографии изумительных видов спутника, снятых в максимальной близости (261 км) от поверхности.

Поверхность спутника Ио

Замечательные цвета в вулканическом кратере Патера на спутнике Юпитера Ио, снимок космического корабля НАСА Галилео.

Ио имеет множество вулканов (около 400). Это наиболее геологически активное тело Солнечной системы. В процессе сжатия коры Ио образовалось около ста гор. Вершины некоторых, к примеру, Южная Боосавла, превышает пик Эвереста в два раза. На поверхности спутника располагаются обширные равнины. Поверхность его имеет уникальные свойства.

Она содержит множество оттенков цветов: белого, красного, черного, зеленого. Такая особенность обусловлена регулярными потоками лавы, которые могут быть простираться до 500 километров.

 Ученые предполагают, что теплая поверхность планеты и возможность наличия воды делают возможным зарождения живой материи и дальнейшее ее обитание на спутнике.

Атмосфера спутника Ио

Ганимед, Каллисто, Ио и Европа

Атмосфера спутника является тонкой и имеет маленькую плотность, фактически правильнее говорить об экзосфере, которая наполняется вулканическими газами. В состав входят диоксид серы и другие газы. Вулканические выбросы спутника не содержат воду и водяные пары. Таким образом, Ио имеет существенное отличие от других спутников Юпитера.

Важным открытием космического аппарата Галилео стало обнаружение на значительной высоте спутника ионосферы. Вулканическая активность изменяет атмосферу и ионосферу спутника.

Орбита и вращение спутника

Ио – это синхронный спутник. Его орбита располагается в 421700 км от центра Юпитера. Полный оборот вокруг планеты Ио совершает за 42,5 часа.

Вулканические процессы на спутнике Ио

Три массивных извержения вулканов

Процессы извержения на спутнике происходят не в результате распада радиоактивных элементов, а в результате приливного взаимодействия с Юпитером.

Приливная энергия разогревает недра спутника и за счет этого выделяется колоссальная энергия, примерно, от 60 до 80 триллионов ватт, распределение которой происходит неравномерно. Так, например, аппарат «Вояджер-1» обнаружил 8 активных извержений вулканов.

Через некоторое время были проведены исследования поверхности аппаратом «Вояджер-2», которые показали извержение 7 из них (они продолжали извергаться).

Ио яркий и удивительный мир, аналогов которому нет во всей Солнечной системе. Активный вулканизм на спутнике размером с нашу Луну просто поражает масштабами, а футуристические фотографии поверхности спутника, полученные множеством космических аппаратов заставляют вновь и вновь погружаться в атмосферу этого далекого и таинственного мира.

Источник: http://SpaceGid.com/io-sputnik-yupitera.html

Спутник Ио

Солнечная система > Система Юпитер > Спутники > Ио

Ио – самый вулканически активный спутник в Солнечной системе группы Галилея: таблица параметров, обнаружение, имя, исследования с фото, состав и поверхность.

Ио — наиболее вулканчески активный спутник Солнечной системы.

Чем глубже продвигаемся в систему, тем больше тайн раскрываем. Наиболее интересными стали 4 крупнейших спутника Юпитера, именуемые галилейскими лунами. Ио привлекает внимание из-за вулканической активности (более 400 действующих вулканов).

Обнаружение и имя спутника Ио

В 1610-м году Галилео Галилей заметил спутник при помощи обновленного телескопа собственного изобретения. Но он не мог отличить его от Европы, поэтому воспринял как единую световую точку. Но на следующий день разглядел отдельные тела.

В 1614 году Симон Мариус утверждал, что заметил спутники самостоятельно. Интересно, что именно его имена приняли в качестве официальных обозначений, ведь ранее их просто перечисляли римскими цифрами.

Телескоп Галилея с рукописной надписью, указывающей увеличительную силу объектива

Ио была любовницей Зевса. Происходила из линии потомков Геракла и служила жрицей в храме Геры. Все ее формирования получили имена от божеств, связанных с огнем и громом, а также персонажей и локаций из произведения Данте.

Сейчас в МАС записано 225 вулканов, плато, гор и крупных альбедо. Можно встретить Прометея, Тваштар Патера или Пан Менса.

Размер, масса и орбита спутника Ио

При радиусе в 1821.6 км и массе – 8.93 х 1022 кг он достигает лишь 0.266 земного размера и 0.015 раз массивности. Средняя удаленность от планеты – 421700 км, но из-за эксцентриситета в 0.0041 может подходить на 420000 км и отдаляться на 432400 км.

Сравнительные размеры некоторых спутников и планет в Солнечной системе

Это наиболее внутренний спутник среди группы Галилея, а орбитальный путь проходит между Фивой и Европой. Пребывает в приливном блоке и всегда смотрит на Юпитер одной стороной.

Таким образом вы узнали, спутником какой планеты является Ио.

Сведения об открытииОрбитальные характеристикиФизические характеристики
Дата открытия 8 января 1610
Первооткрыватели Галилео Галилей
Апоцентр 420 000 км
Эксцентриситет 0,0041
Период обращения 1,769 137 дней
Наклонение 2,21° (к эклиптике)
0,05° (к экватору Юпитера)
Спутник Юпитера
Размеры 43 660,0 × 3 637,4 × 3 630,6 км
Радиус 1 821,3 км
Масса 8,9319·1022 кг
Плотность 3,528 г/см3
Альбедо 0,63 ± 0,02

На прохождение орбитального пути тратит 42.5 часов при резонансе 2:1 с Европой и 4:1 с Ганимедом. Эти показатели повлияли на эксцентриситет, что стало изначальным источником для нагрева и геологической активности.

Состав и поверхность спутника Ио

С плотностью в 3.528 г/см3 Ио обходит любую луну в системе. Объект представлен силикатной породой и железом. По наполнению ближе к планетам земного типа.

Кора и мантия богаты на силикаты, а ядро выполнено из железа и сульфида железа. Последнее охватывает 20% массы спутника, а в радиусе простирается на 350-650 км. Но это в том случае, если состоит и железа.

При добавлении серы охват в радиусе увеличится до 550-900 км.

Мантия на 75% состоит из магния и высокого уровня железа. Литосфера из базальта и серы занимает 12-40 км.

Внутреннее строение Ио

Анализ магнитных и тепловых потоков показал, что магматический океан расположен на глубине в 50 км, занимает такую же толщину и 10% мантии. Температурная отметка задерживается на 1200°С.

Главным источником нагрева выступает приливной изгиб, созданный орбитальным резонансом с Европой и Ганимедом. На нагревание также влияет удаленность луны от планеты, показатель эксцентриситета, состав и физическое состояние.

Приливной блок приводит к трению, что повышает градус внутри Ио. Это вызывает вулканическую активность и выбросы лавы на высоту в 500 км. Поверхностный слой практически полностью лишен кратеров и укрыт равнинами, горами, ямами и вулканическими потоками. На это намекает и яркий внешний вид.

Аппарат Галилео отобразил темное пятно, созданное извержением в 1997 году

На поверхности всегда есть двуокись серы, создающая крупные былые и серые участки. Атомная сера формирует желтые и желто-зеленые территории. Сера на полярных участках проходит сквозь радиационное влияние, из-за чего краснеет.

На луне практически нет воды, хотя в некоторых областях сохранились ледяные залежи. Горы в среднем вытягиваются на 6 км, а максимальная отметка достигает 17.5 км на южной стороне. Они изолированы и не обладают видимыми глобальными тектоническими рисунками.

Большая часть гор создается из-за сжиманий в литосфере, к чему приводят глубинные сдвиги.

Горы выполнены в различных формах и представлены плато и наклонными блоками. Те, что связаны с вулканами, напоминают щитовые вулканы с резкими склонами. Обычно они уступают по размерам остальным (1-2 км в высоту и 40-60 км в ширину).

Активные вулканы на спутнике Ио

Перед вами первый по вулканической активности объект в системе. Его поверхность укрыта сотнями вулканов и лавовыми потоками. Это не только создает лавовые выбросы на 500 км в высоту, но и влияет на геологию.

К примеру, масштабные извержения приводят к потокам в сотни километров, представленные базальтовыми силикатами, железом и магнием. В пространство высвобождаются сера, двуокись серы и зола.

Активность вулканов также создает многочисленные углубления, простирающиеся на 41 км и больше.

Атмосфера спутника Ио

Слабый атмосферный слой состоит из двуокиси серы, монооксида серы, атомной серы, хлорида натрия и кислорода. Давление колеблется от 3.3 х 10-5 до 3 х 10-4 Па. На ночной стороне может упасть к 0.1 х 10-7 Па.

Температура также колеблется от -163.15°С до -183.15°С, но максимальная поднимается до 1526.85°С. Уровень атмосферной плотности выше всего в вулканических хребтах, что вызывает пополнение атмосферы. Вулканические шлейфы выступают источником для диоксида серы. В секунду выпускают 104 кг, но большая часть конденсируется к поверхности.

Элементы вроде NaCl, SO, S и O поступают из вулканической дегазации. Полярные сияния формируются из-за контакта заряженных частичек магнитосферы Юпитера с атмосферой спутника. Наиболее яркие события наблюдаются возле экваториальной линии.

Контакт с магнитосферой Юпитера спутника Ио

Ио влияет на создание планетарной магнитосферы. Юпитер вырывает материал из лунной атмосферы на скорости 1 тонна в секунду. Большая часть оказывается на орбите вокруг планеты, формируя нейтральное облако, где присутствует кислород, сера, натрий и калий.

Магнитное поле токов Юпитера с плазменным тором Ио

Линии планетарного магнитного поля, пересекающие луну, объединяют атмосферу Ио и нейтральное облако с полярным атмосферным слоем Юпитера. Из-за этого формируется ток, который и создает сияния.

Линии, проходящие мимо лунной ионосферы, также приводят к электрическому току, способному генерировать до 400000 вольт. Из тока возникает индуцированное магнитное поле. Подобное нашли и в других галилейских спутниках.

Исследование спутника Ио

Впервые мимо спутника пролетели Пионер-10 (1973) и Пионер-11 (1974). Миссии позволили впервые оценить массивность, состав, высокий уровень плотности, наличие атмосферы и интенсивных радиационных поясов.

Южная полярная область Ио в мозаике Вояджера-1

В 1979 году пролетели Вояджеры 1 и 2, с чьей помощью удалось получить более качественные изображения. Они впервые продемонстрировали цветной ландшафт. Также сведения показали, что на поверхности много серы и активные вулканы.

В 1995 году к Юпитеру прибыл аппарат Галилео, выполнив близкий подход 7 декабря. Галилео отследил процесс извержения, разобрался в составе и определил поверхностные изменения с момента прилета Вояджеров.

Миссию дважды расширяли в 1997-м и 2000-м гг. За это время Галилео 6 раз пролетел мимо Ио, что позволило четко определить геологические процессы и исключить магнитное поле.

В 2000 году Кассини приблизился и отдалился от системы Юпитера, что позволило провести совместный обзор. Это привело к находке нового шлейфа и лучшего понимания сияний.

В 2007 году мимо системы пролетел Новые Горизонты, добывший множество изображений поверхности, шлейфов и новых источников струй.

В 2011 году стартовал аппарат Юнона, который теперь следит за планетой и ее спутниками. За вулканической деятельностью удается наблюдать благодаря ИК-спектрометру. В 2022 году могут запустить миссию JUICE, которая сможет рассмотреть вулканы за 2 года, пока не установится на орбиту Ганимеда.

Орбитальная миссия JUICE

Планировалось отправить миссию IVO в 2021 году, но она не получила одобрения. Ио считается одной из наиболее интересных лун и самой плотной в системе. Несмотря на множество вулканов, она местами крайне морозная и переполнена электричеством. Возможно, в будущем мы сможем использовать индуцированное магнитное поле в своих целях. Но вулканы не подпустят близко колонистов.

Таким образом вы узнали, спутником какой планеты является Ио.

Карта поверхности спутника Ио

Нажмите на изображение, чтобы его увеличить

Ссылки

(1

Источник: http://v-kosmose.com/io-sputnik-yupitera/

Ссылка на основную публикацию