Создание космического аппарата с ядерной установкой будет продолжено

Летный образец космического аппарата с ядерной энергодвигательной установкой (ЯЭДУ) в России планируется создать к 2025 году

Создание ЯЭДУ предусмотрено опытно-конструкторской работой «Нуклон» (бюджет 15,84 млрд рублей), ОКР «Источник» (6,18 млрд рублей), а также научно-исследовательской работой «Верификация» (300 млн рублей), НИР «Отработка» (400 млн рублей) и НИР «Ядро» (160 млн рублей). В рамках ОКР «Нуклон» предусмотрено создание космического аппарата-демонстратора с готовностью к летным испытаниям в 2025 году (операции по запуску и летной отработке проектом ФКП-25 не предусмотрены).

Ядерные системы электроэнергии считают основными перспективными источниками энергии в космосе при планировании масштабных межпланетных экспедиций.  Энерговооруженность Международной космической станции — 110 киловатт — обеспечивается работой солнечных батарей площадью 17 на 70 м.

Для реализации межпланетных пилотируемых миссий, например к Марсу, потребуется гораздо более серьезная энерговооруженность — одними солнечными батареями вопрос будет не решить.

Обеспечить мегаваттные мощности в космосе в перспективе позволит ЯЭДУ, созданием которой сейчас занимаются предприятия «Росатома».

Ранее сообщалось, что к 2017 году Научно-исследовательский и конструкторский институт энергетических технологий (НИКИЭТ, структура «Росатома») планирует построить ядерный реактор для будущего двигателя. Головной организацией по созданию самой энергодвигательной установки является ФГУП «Центр Келдыша». А транспортный модуль собиралась строить РКК «Энергия». 

В 2010 году проект создания ядерного двигателя для космического аппарата был одобрен комиссией при президенте по модернизации и технологическому развитию экономики — проект называется «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса». На проект тогда выделили 17 млрд рублей из федерального бюджета.

В 2012 году Владимир Поповкин, возглавлявший в то время Роскосмос, объяснял, что опытный образец ядерного двигателя позволит принять решение — настало ли время создавать летный образец изделия.

Поповкин взвешенно относился к идее использования ядерных двигателей в космонавтике, отмечая, что они будут востребованы в относительно далекой перспективе для осуществления экспедиций в дальний космос.

Работы по созданию ядерных двигателей для космических аппаратов активно велись в СССР и США в прошлом веке: американцы закрыли проект в 1994 году, СССР — в 1988-м. Закрытию работ во многом способствовала чернобыльская катастрофа, которая негативно настроила общественное мнение в отношении использования ядерной энергии.

К тому же испытания ядерных установок в космосе не всегда проходили штатно: в 1978 году советский спутник «Космос-954» вошел в атмосферу и развалился, разбросав тысячи радиоактивных осколков на территории в 100 тыс. кв. км в северо-западных районах Канады.

Советский Союз выплатил Канаде денежную компенсацию в объеме более $10 млн.

В мае 1988 года две организации — Федерация американских ученых и Комитет советских ученых за мир против ядерной угрозы — сделали совместное предложение о запрещении использования ядерной энергии в космосе. Формальных последствий то предложение не получило, однако с тех пор ни одна страна не производила запусков космических аппаратов с ядерными энергетическими установками на борту.

Источник: http://www.atomic-energy.ru/news/2016/01/18/62559

Роскосмос прокомментировал информацию об отказе от создания ядерных двигателей для ракет

ВСЕ ФОТО

В Роскосмосе официально опровергли утверждения о намерении ведомства отказаться от перспективных разработок ядерного двигателя для полетов в дальний космос. Ранее журналисты сообщали об исключении работ над созданием двигателя из федеральной программы.

«Роскосмос продолжает работы над ключевыми технологиями для создания ракет-носителей с многоразовыми первыми ступенями, межорбитальных буксиров с электроракетными или ядерными двигательными установками. Информация об исключении этих работ из проекта новой ФКП 2016-2025 не соответствует действительности», — заявил представитель ведомства Игорь Буренков в комментарии для РИА «Новости».

Ранее источник ТАСС утверждал, что в новом проекте Федеральной космической программы, над которым работает Роскосмос, предусматривается закрытие работ по созданию ядерной энергодвигательной установки мегаваттного класса для полетов в дальний космос.

«Новым проектом Федеральной космической программы на 2016-2025 годы предусматривается закрытие всех опытно-конструкторских работ по направлению создания ядерных энергодвигательных установок большой мощности», — сообщил источник.

В сообщении говорилось, что по направлению «исследования в обеспечение создания научно-технического задела по мощным энергодвигательным системам перспективных космических аппаратов и определения рациональных особенностей их использования» работы планируется вести до 2018 года, а запланированный переход к научно-исследовательским работам по программе «Ядерная энергодвигательная установка — 2025» уже не произойдет.

Кроме того, из программы, как увтверждалось, вычеркнуты работы по разработке и наземным испытаниям ключевых элементов и технологий ядерных энергодвигательных установок большой мощности (до 500 кВт) для межорбитального буксира и межпланетных космических аппаратов.

Работы по созданию транспортного энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса были утверждены президентской комиссией по модернизации и технологическому развитию экономики РФ в 2009 году, сами работы начались год спустя.

В 2012 году был готов технический проект, а в 2015 планировалось создать саму энергодвигательную установку. В концу 2018 года транспортно-энергетический модуль должен был быть подготовлен к летно-конструкторским испытаниям. Проект оценивался в 20 млрд рублей, 17 из которых планировалось выделить из бюджета.

Для реализации проекта была сформирована кооперация во главе с Центром им. Келдыша, корпорацией «Энергия» и институтом им. Доллежаля.

Сейчас полеты в околоземное пространство осуществляются на ракетах, которые двигаются за счет сгорания в их двигателях жидкого или твердого топлива.

По сути, это те же двигатели, как и в автомобилях, только вместо бензина используется керосин или гептил.

За минувшие полвека технология была отработана до мелочей, но ракетостроители признают, что развивать ее дальше проблематично, отмечает журнал «Эксперт». Это тупиковый путь с точки зрения технической эволюции.

«Сколько бы специалисты всего мира по ракетным двигателям ни трудились, максимальный эффект, который мы получим, будет исчисляться долями процентов.

Из существующих ракетных двигателей, будь это жидкостные или твердотопливные, грубо говоря, выжато все, и попытки увеличения тяги, удельного импульса просто бесперспективны. Ядерные же энергодвигательные установки дают увеличение в разы.

На примере полета к Марсу — сейчас надо лететь полтора-два года туда и обратно, а можно будет слетать за два-четыре месяца», — говорил в свое время экс-глава Роскосмоса Анатолий Перминов.

Надо сказать, создание ядерных космических установок ведется не с нуля. С 1970 по 1988 годы СССР запустил более трех десятков спутников-шпионов, оснащенных ядерными силовыми установками малой мощности типа «Бук» и «Топаз».

Затем, после нескольких неудачных попыток (в том числе NASA) создать ядерный реактор, стабильно работающий в космосе, ООН был принят запрет на использование космических аппаратов с ядерными двигательными установками.

Подробно о технологиях, которые должны позволить преодолеть гравитационный колодец и приблизить человечество к космосу, рассказывает журнал «Популярная механика».

Параллельно с этим Центр им. Келдыша в 60-70 годы прошлого века активно работал над созданием ионного двигателя, который, как считалось, лучше всего подходит для создания двигательной установки большой мощности, работающей на ядерном топливе.

«В 90-х годах XX века мы в Центре Келдыша возобновили работы по ионным двигателям. Сейчас должна быть создана новая кооперация для такого мощного проекта. Уже есть прототип ионного двигателя, на котором можно отрабатывать основные технологические и конструктивные решения. А штатные изделия еще нужно создавать.

У нас срок определен — к 2018 году изделие должно быть готово к летным испытаниям, а к 2015 году должна быть завершена основная отработка двигателя.

Дальше — ресурсные испытания и испытания всего агрегата в целом», — обещал в 2012 году начальник отдела электрофизики Центра, профессор аэрофизики и космических исследований МФТИ Олег Горшков.

В прошлом году Научно-исследовательский и конструкторский институт энерготехники им. Доллежаля объявил о завершении испытаний системы управления реактором ядерной энергодвигательной установки мегаваттного класса для полетов в дальний космос.

«В части реакторной установки, в части объема работ госорпорации Росатом (в которую входит институт Доллежаля. — Прим. NEWSru.com) все идет по плану, в соответствии с дорожной картой», — приводил сайт «Росатом» слова генерального конструктора института Юрия Драгунова. Он пояснил, что техническая документация проекта разработана и «сейчас идет очень большой объем испытаний».

«Например, полностью испытан регулирующий орган (реактора), продолжаются испытания тепловыделяющих элементов», — отметил Драгунов. Он подтвердил, что двигательная установка будет готова к 2018 году.

Над разработкой принципиально нового двигателя для полетов в дальний космос работают и американцы. В NASA рассчитывают уже в 30-е годы нынешнего столетия осуществить пилотируемый полет к Марсу, и вопрос об использовании энергии расщепления атомного ядра как никогда актуален.

В соответствующем докладе доктора Майкла Хаутса из Космического центра им.

Маршалла, который цитирует The Daily Mail, говорится о разработке ядерно-термических ракетных двигателей, в котором водород подается в камеру с атомным реактором, разогревается до запредельных температур и в виде плазмы выбрасывается через дюзы, обеспечивая реактивную тягу.

Доктор Хаутс представил несколько возможных конструкций космических кораблей и рассказал, что вместе с коллегами исследует характеристики разных видов ядерного топлива для подбора наиболее подходящего образца.

А на сайте NASA ведется отчет о работе над созданием двигателя с названием Fusion Driven Rocket. Это 150-тонная установка, в которой используются гранулы дейтерия, трития и литиевые кольца. Термоядерная реакция в этой установке запускается за счет магнитных полей.

Источник: https://www.newsru.com/russia/24apr2015/cosm.html

Ядерная энергетическая установка для ракет и подводных аппаратов

Вещество при этом расходуется и время работы двигателя ограничено.Такие ракеты уже были и ещё будут. А вот за счёт чего движется ракета нового типа, если её дальность является «практически неограниченной»?

Ядерная энергетическая установка для ракет

Чисто теоретически, кроме тяги на веществе, имеющемся в запасе на ракете, движение ракеты возможно за счёт тяги электрических двигателей с «пропеллерами» (винтовой двигатель). Электричество при этом производит генератор, питающийся от ядерной силовой установки.

Но такую массу без большого крыла на винтовой тяге, да ещё с винтами небольшого диаметра, в воздухе не удержать — слишком мала такая тяга. А это таки ракета, а не беспилотник.Итого, остаётся самый неожиданный и, как оказалось, самый эффективный способ обеспечения ракеты веществом для тяги — взятие его из окружающего пространства.Т.е.

, как бы это удивительно ни звучало, но новая ракета работает «на воздухе»!В том смысле, что из её сопла вырывается именно разогретый воздух и более ничего! А воздух не закончится, пока ракета находится в атмосфере. Именно поэтому эта ракета — крылатая, т.е. её полёт проходит целиком в атмосфере.

Классические технологии ракет большой дальности старались сделать полёт ракеты выше, чтобы уменьшить трение о воздух и тем самым увеличить их дальность. Мы как всегда сломали шаблон и сделали ракету не просто большой, а неограниченной дальности именно в воздушной среде.Неограниченная дальность полёта даёт возможность таким ракетам работать в режиме ожидания.

Запущенная ракета прибывает в район патрулирования и нарезает там круги, ожидая доразведки данных о цели или прибытия цели в данный район. После чего неожиданно для цели немедленно её атакует.

Ядерная энергетическая установка для подводных аппаратов

Думаю, аналогично устроена и ядерная энергетическая установка для подводных аппаратов о которых говорил Путин. С той поправкой, что вместо воздуха используется вода.Дополнительно об этом говорит то, что эти подводные аппараты обладают низкой шумностью.

Известная торпеда «Шквал», разработанная ещё в советское время, имела скорость порядка 300 км/час, но была очень шумной. По сути это была ракета, летящая в воздушном пузыре.За малошумностью же стоит новый принцип движения. И он — тот же самый, что и в ракете, потому что универсален. Была бы только окружающая среда минимально необходимой плотности.

Читайте также:  Секира – многофункциональный боевой топор с магическим прошлым

Этому аппарату неплохо подошло бы название «Кальмар», потому что по сути это водомётный двигатель в «ядерном исполнении» :)Что касается скорости, она кратно превосходит скорость самых быстрых надводных кораблей. Самые быстрые корабли (именно корабли, а не катера) имеют скорость до 100-120 км/час.

Следовательно, с минимальным коэффициентом 2 получаем скорость 200-250 км/час. Под водой. И не очень шумно. И с дальностью в многие тысячи километров… Страшный сон наших недругов.

Относительно ограниченная по сравнению с ракетой дальность — временное явление и объясняется тем, что морская вода высокой температуры — очень агрессивная среда и материалы камеры, условно говоря, сгорания, имеют ограниченный ресурс. Со временем же дальность этих аппаратов может быть увеличена в разы только за счёт создания новых, более устойчивых материалов.

Ядерная энергетическая установка

Несколько слов о самой ядерной энергетической установке.1. Поражает воображение фраза Путина:«При объёме в сто раз меньше, чем у установок современных атомных подводных лодок, имеет большую мощность и в 200 раз меньшее время выхода на боевой режим, то есть на максимальную мощность.»Опять одни вопросы.

Как они этого добились? Какие конструкторские решения и технологии применены?Мысли такие.1. Радикальное, на два порядка, увеличение отдачи мощности на единицу массы возможно только при условии приближения режима работы ядерного реактора к взрывному. При этом реактор надёжно управляется.2.

Поскольку околовзрывной режим работы обеспечивается надёжно, скорее всего, это реактор на быстрых нейтронах. На мой взгляд, только на них возможно безопасное использование столь критического режима работы. Кстати, для них топлива на Земле — на столетия.3.

Если же со временем мы узнаем, что это таки реактор на медленных нейтронах, я тем более снимаю шляпу перед нашими ядерщиками, потому что без официального заявления в это совершенно невозможно поверить.

В любом случае, смелость и изобретательность наших ядерщиков поразительна и достойна самых громких слов восхищения! Особенно приятно, что наши ребята умеют работать в тиши. А потом как грохнут новостью по голове — хоть стой, хоть падай! 🙂

Как это работает

Примерная, смысловая, схема работы двигателя ракеты на основе ядерной силовой установки выглядит так.1. Открывается, условно говоря, впускной клапан. Набегающий воздушный поток попадает через него в камеру нагрева, которая постоянно разогрета от работы реактора.2. Впускной клапан закрывается.3.

Воздух в камере нагревается.4. Открывается выпускной клапан и воздух с большой скоростью вырывается из сопла ракеты.5. Выпускной клапан закрывается.Цикл повторяется с высокой частотой. Отсюда эффект непрерывной работы.P.S. Описанный выше механизм, повторю, — смысловой.

Он дан по просьбе читателей для лучшего понимания того, как этот двигатель может вообще работать. В реальности, не исключено, реализован прямоточный двигатель.

Главное в данной статье — не определение типа двигателя, а выявление вещества (набегающего воздуха), которое используется в качестве единственного рабочего тела, дающего тягу ракете.

Безопасность

Использование открытия российских учёных в гражданском секторе тесно связано с безопасностью ядерной силовой установки. Не в смысле её возможного взрыва — думаю, этот вопрос решён, — а в смысле безопасности его выхлопа.

Защита малогабаритного ядерного двигателя явно меньше, чем у большого по размерам, поэтому нейтроны наверняка будут проникать в «камеру сгорания», а точнее, камеру разогрева воздуха, тем самым с некоторой вероятностью делая радиоактивным всё, что таковым можно в воздухе сделать.

Азот и кислород имеют радиоактивные изотопы с малым временем полураспада и не опасны. Радиоактивный углерод вещь долгоживущая. Но есть и хорошие новости.Радиоактивный углерод образуется в верхних слоях атмосферы под действием космических лучей и так, так что свалить все на ядерные двигатели не получится.

Но главное, концентрация углекислого газа в сухом воздухе составляет всего 0,02÷0,04%.Учитывая же, что процент углерода, становящийся радиоактивным, величина ещё на несколько порядков меньшая, предварительно можно считать, что выхлоп ядерных двигателей не более опасен, чем выхлоп ТЭЦ, работающей на угле.

Более точная информация появится, когда дело подойдёт к гражданскому применению этих двигателей.

Перспективы

Честно говоря, от перспектив захватывает дух. Причём я уже говорю не о военных технологиях, здесь всё ясно, а о применении новых технологий в гражданском секторе.Где могут быть применены ядерные силовые установки? Пока навскидку, чисто теоретически, в перспективе 20-30-50 лет.1. Флот, в том числе гражданский, транспортный.

Многое придётся переводить на подводные крылья. Зато скорость можно легко увеличить вдвое/втрое, а стоимость эксплуатации с годами будет только падать.2. Авиация, прежде всего транспортная. Хотя, если безопасность с точки зрения опасности облучения окажется минимальной, возможно применение и для гражданских перевозок.3.

Авиация с вертикальным взлётом и посадкой. С использованием резервуаров со сжатым воздухом, пополняемых во время полёта. Иначе, на малых скоростях, необходимую тягу не обеспечить.4. Локомотивы скоростных электропоездов. С использованием промежуточного электрогенератора.5. Грузовые автомобили на электротяге.

Тоже, разумеется, с использованием промежуточного электрогенератора. Это, думаю, будет в отдалённой перспективе, когда силовые установки удастся уменьшить ещё в несколько раз. Но исключать такой возможности я бы не стал.Это уже не говоря о наземном/мобильном использовании ядерных электроустановок.

Одна беда — для работы таких малогабаритных ядерных реакторов требуются не уран/плутоний, а гораздо более дорогие радиоактивные элементы, наработка которых в ядерных же реакторах пока очень и очень дорога и требует времени. Но и эта задача может быть со временем решена.Друзья, обозначена новая эра в сфере энергетики и транспорта.

Судя по всему, Россия станет лидером этих направлений на ближайшие десятилетия.Примите мои поздравления.

Скучно не будет!

Источник: https://alexandr-palkin.livejournal.com/7025260.html

Ядерные реакторы в космосе

История развития космической ядерной энергетики необычна и нестандартна на фоне других направлений развития ядерных технологий.

С самого первого дня космической эры ядерная энергия рассматривалась, как безальтернативный вариант для долговременных и энергоемких космических операций: лунных баз, межпланетных полетов, гигантских геостационарных платформ для связи, как единственный источник энергии в дальнем космосе.

В силу абсолютной убежденности в том, что все это будет реализовано еще в 20 веке, в США и СССР стартовали обширные программы разработки ядерных энергоустановок (ЯЭУ) для обеспечения энергией космических аппаратов.

Однако, несмотря на десятилетия усилий, практический результат разработок весьма ограничен — один полет опытной установки в США, несколько опытных в СССР и, единственная в своем роде, серия 30+ запусков космических радаров УС-А, с электропитанием от ЯЭУ “БЭС-6 Бук”.

Почему результат оказался несоизмерим с замахом, какие технические решения применялись и планировались в космических ЯЭУ — об этом подробнее сегодня.

Космические условия работы требуют множества специфических решений от разработчиков ядерных реакторов. Основные отличия от земного базирования заключаются в следующих эффектах:

0. Для космического применения наиболее важным является вес. Весовая культура определяет множество других решений. Например защита от излучения реактора делается секторно, в сторону полезной нагрузки.
1. Невесомость приводит к отсутствию конвективного теплообмена в жидких и газообразных теплоносителях. Из-за этого резко усложняется теплосъем и борьба с локальными перегревами АЗ

2. Сброс паразитного тепла ЯЭУ возможен только через излучение радиаторами-холодильниками (РХ). Приемлемые массы РХ получаются, если их рабочая температура составляет хотя бы 500К (230 С), а лучше 800К.

3. Жесткие энергомассовые характеристики вкупе с предыдущим пунктом заставляют использовать довольно экзотические теплоносители — гелий, СО2 или легкие металлы — литий, калий, натрий.

4. От космических ядерных реакторов требуется очень долговременная работа без перегрузок ядерного топлива, ну и разумеется максимальная надежность все это время.

Все в месте, такие требования сильно осложнали жизнь разработчиков ЯЭУ, удорожали и усложняли их применение. Получались системы, весьма далекие от своих наземных собратьев, а требования по массе и надежности приводили к необходимости очень длительной проработки этой экзотики.

Первыми из инженерных пеленок вышли крайне примитивные варианты — использовать тепло радиоактивного распада (не цепной реакции!), например изотопа стронция Sr90 (один из основных продуктов “горения” U235 в реакторе) или Pu238 и простой термоэлектрический преобразователь (представляющий собой фактически германиевый или кремниевый диод).

КПД такой “установки” был всего ~1%, но она была проста, не имела движущихся частей и позволяла снабжать электричеством космический аппарат долгие годы.

Первым спутником с РИТЭГ (радиоизотопный термоэлектрический генератор) стал запущенный в июне 1961 года  американский Transit 4A (навигационный спутник для флота), несший на борту РИТЭГ SNAP-3 мощностью всего 2,5 ватта и весом 2,5 килограмма.

Первый в истории ядерный источник энергии в космосе.

РИТЭГи образовали отдельную ветку источников питания, и активно применялись (и применяются) на космических аппаратах и на земле (например в автономных метеокомплексах).

Их преимуществом является долгая работа (так, РИТЭГи АМС Вояджер-1,2  потеряли за почти 40 лет работы всего 40% начальной мощности, причем часть этой потери приходится на деградацию термоэлектрического генератора, а не на распад плутония) и простота конструкции, а недостатками — невысокая удельная  и абсолютная мощность, не больше пары электрических киловатт, гораздо бОльшее количество активности на килограмм массы при выводе и дороговизна — плутоний 238 (именно 238, а не 239 — он является мощным альфа-эммитером с удобным периодом полураспада) стоит порядка нескольких миллионов долларов за килограмм (и дает 560 ватт с каждого килограмма).

Более современные РИТЭГ, применявшийся на Кассини и Новых Горизонтах.

2 таких РИТЭГа в составе одного из трех реальных энергомодулей Cassini перед монтажом на аппарат.

Однако вернемся к космическим реакторам. Параллельно с нечетными (РИТЭГ) SNAP, развивалась ветка и четных — ядерных реакторов.

Программа началась в 1958 году, прошла несколько прототипов, а единственным летным реактором стал SNAP-10A, запущенный 3 апреля 1965 года.

Активная зона этого реактора была набрана из 37 экзотических твэлов со смесью металлического U235 93% обогащения и гидрида циркония (замедлитель!) и охлаждения сплавом NaK. 

Запасной экземпляр реактора SNAP-10A. Слева электромагнитный насос (с белыми радиаторами), правее сам реактор. Видны поворотные бериллиевые отражатели (эдакие лопасти), которые регулируют мощность реактора.

Реактор работал на тепловых нейтронах и имел мощность в 40 киловатт. Эта мощность подогревала жидкометаллический теплоноситель с 475С до 540С, тепло сбрасывалось через полупроводниковый преобразователь, который вырабатывал до 550 ватт электрической энергии.

Управление этим реактором (как и всеми остальными, кстати) осуществлялось путем открытия “жалюзей” в отражателе нейтронов — таким образом регулировалась утечка нейтронов из активной зоны, а значит и скорость цепной реакции. Вес ЯЭУ составлял 450 килограмм, вес топлива  ~40 килограмм.

Реактор проработал в космосе 43 дня, и был потерян из-за электрических проблем в спутнике-носителе.

Сборка спутника SNAPshot, на котором проводились космические испытания реактора SNAP-10A

SNAP-10A стал первым и последним космическим реактором США, хотя проектов и наземных опытных установок различные группы в США наплодили очень немало, и продолжают разрабатывать их сейчас.

Термоэлектрический генератор SNAP-10A. Такой принцип надолго станет основным для ядерных космических источников энергии.

Однако основной практический опыт принадлежит СССР, который начал разработку космических ЯЭУ чуть позже США, а первой наземной экспериментальной установкой стал БР “Ромашка”, запущенный в августе 1964 года. Его создателем стал Курчатовский институт.

Так же, как и SNAP это была довольно экзотическая конструкция — быстрый реактор с твэлами из карбида урана, нагретыми до 1600 С на поверхности и до 1800 внутри (что определило использование карбида) и с отдачей энергии радиативно бериллиевому отражателю.

Активная зона реактора была вакуумирована (и потом проводились эксперименты с работой в атмосфере гелия), принудительной прокачки теплоносителя не производилось.

Как и у американского конкурента тепловая мощность “Ромашки” была 40 киловатт, а электрическая -~450, топливом служил оружейный уран, а управление осуществлялось через регулирование утечки нейтронов.

Реактор «Ромашка»

Читайте также:  Танк-истребитель т-34-57

Однако СССР пошел дальше. Необходимость отслеживать авианосцы США привела к созданию орбитальных радиолокаторов системы “Легенда”.

Для лучшей энергетики размещать их надо было на низкой орбите, и в начале 60х ЯЭУ для обеспечения электроэнергией радиолокатора казалось хорошей альтернативой СБ — в 1961 3 киловатта СБ и аккумуляторов были не дешевле, да и аэродинамическое торможение “лопухами” ограничивало время жизни спутника парой месяцев. Так была создана самая массовая космическая ЯЭУ БЭС-5 или “Бук”

Макет спутника радиолокационной разведки УС-А. Реактор — по некоторым данным темный элемент слева либо металлический горизонтальный килиндр в центре.

Идеология создания “Бука” была направленная на как можно большее упрощение ЯЭУ, продолжая линию “Ромашки”. Быстрый реактор с твэлами из сплава металлического урана и циркония общей массой 35 кг с бериллиевым отражателем.

Тепловая мощность ~100 киловатт отводилась из реактора натрий-калиевой эвтектикой (как у SNAP-10A) при выходной температуре в 720 градусов и преобразовывалась полупроводниковым ТЭГ в 2,8 киловатта электроэнергии, питавшей радиолокатор.

Реактор управлялся подвижными элементами отражателя, а кроме того имел канал для ввода поглощающего стержня для глушения реактора.

Еще один макет БЭС-5 БУК, на котором мало что можно разглядеть.

В период 1963-1969 гг. была проведена отработка жидкометаллического контура, прошли испытания безреакторных БЭС-5 с имитатором термоэлектрического генератора, а затем с действующим ТЭГ.

 Первая эксплуатационная ЯЭУ “Бук” с серийным № 31 была установлена на ИСЗ “Космос-367”, запущенном 3 октября 1970 г.

Она проработала всего 110 минут, после чего реактор экстренно увели на орбиту “захоронения” по причине “заброса” температуры первого контура выше предельно допустимой, вызванной расплавлением АЗ реактора.

Доработки, проведенные на «Красной Звезде», позволили продолжить летные испытания системы, которые заняли, в общей сложности, почти пять лет. В 1971-1972 гг. на орбиту были выведены три КА с Бук: “Космос-402”, ”Космос-469” и ”Космос-516” . Их полеты прошли без существенных замечаний, что позволяло в кратчайшие сроки ввести систему радиолокационной разведки в ограниченную эксплуатацию. 

Последний запуск отечественного КА с бортовой ЯЭУ состоялся 14 марта 1988 года. На спутнике “Космос-1932” (18957 / 1988 019А) была установлена доработанная установка с 6-месячным сроком функционирования и электрической мощностью в конце ресурса 2400 Вт. И хотя полет прошел нормально, от эксплуатации аппаратов с ЯЭУ было решено отказаться.

Основной причиной этого стало давление со стороны США и международных организаций, требовавших от Советского Союза “прекратить загрязнение космоса”. Но немаловажным фактором стали и сравнительно низкие технические характеристики ЯЭУ.

Западная реконструкция УС-А

За все годы запусков в нашей стране КА с ЯЭУ БЭС-5 на орбиту было отправлено 32 установки. Одна из них не долетела до космоса, две возвратились назад, а остальные до сего дня продолжают пребывать на высоте 700-800 км от Земли.

Штатно отработали свое 20 аппаратов, а среди аварийных случилась и довольно известное падение остатков реактора КА Космос-954 на территории Канады в январе 1978 года, что привело к международному скандалу. Как и в случае подводных лодок пр.

705 сложность новой техники, вкупе с невозможностью что-то поправить на орбите дала привели к неоднозначному результату.

Параллельно с с доводкой БЭС-5 “Бук” в СССР начали развиваться и другие направления ЯЭУ. Прежде всего это было направление повышения КПД путем замены вездесущих термоэлектрических генераторов на термоэмиссионные. Эту разработку вели обнинский ФЭИ (“Топаз-1”) и Курчатовский институт (“Топаз-2”). 

Макет ЯЭУ «Топаз-1» Хорошо видны барабаны в отражатели, поворотом которых регулируется мощность и 

Принцип термоэмисионных генераторов заключается в утилизации тепловой энергии через эмиссию электронов с нагретого катода на анод — ровно как это происходит в электронных лампах, только катод предлагается нагревать ядерным реактором.

Термоэмиссия имеет преимущество в виде более высокой рабочей температуры системы (т.е. меньшего веса радиаторов-холодильников), а из недостатков — более сложные твэлы и более напряженный реактор.

Конструктивно реактор выполнялся следующим образом — капсула из оксида 90% U235 в молибденовой оболочке работала катодом, и гирлянда таких капсул помещалась в трубу между центрирующих вставок из окиси бериллия.

Капсулы электрически объединялись последовательно, промежуток между ними и трубой откачивался до вакуума и наполнялся парами цезия, после чего такой твэл помещался в реактор. 

Электрогенерирующий твэл: 1- сердечник из обогащённого UO2; 2 — катод (молибден,вольфрам); 3 — анод(ниобий); 4 — вакуумный зазор с парами цезия; 5 — изоляция (окись берилия); 6 — корпус (сталь); 7 — теплоноситель(натрий-калий).

Температура катода достигала 1650 С, а анода — 1200С, охлаждение происходило все тем же натрий-калиевым сплавом. Удельная электрическая мощность была доведена до 2 Вт/см^2 поверхности катода. Разработка и отработка потребовала в рамках Топаз-1 провести реакторные испытания более чем 50 вариантов электрогенерирующих твэлов.

Первые полномасштабные наземные энергетические испытания ядерного прототипа ЯЭУ «Топаз-1» были проведены на стенде ГНЦ «ФЭИ» в 1970 г. Изделие было выведено на электрическую мощность 10 кВт. Испытания продолжались 150 часов, после чего были приостановлены из-за утечки теплоносителя ЖМК. Всего были испытаны 4 ядерных прототипов ЯЭУ «Топаз-1».

 Реактор набирался из 79 электрогенерирующих сборок в каждой из которых было по 5 капсул, и содержал всего 12 килограмм диоксида высокообогащенного урана. Как вершина программы были запущены 2 спутника с ЯЭУ Топаз-1 — Космос-1818 в феврале и Космос-1867 в июле 1988 года.

Они штатно отработали 142 и 343 суток, штатно же показав снижение эффективности и выработки э/э с 6 киловатт до 3.

Однако к середине 70х, когда Топазы были готовы к космическим испытаниям ситуация начала уже меняться. Накопленный опыт ядерных аварий, в т.ч. с КА с ЯЭУ “Бук” приводят к угасанию энтузиазма и все большему количеству пунктов НИОКР, посвященных безопасности и надежности.

Появляются требования ООН по ядерно-безопасным орбитам, которые запрещают запуск ядерных реакторов ниже орбиты в 800 км над поверхностью Земли. Параллельно происходит стремительный прогресс солнечных батарей, мощности которых увеличиваются с десятков ватт в начале 60х до единиц киловатт к 1990.

Их простота и изученность перекрывает путь ЯЭУ мощностью в единицы и даже десятки киловатт.

Разработка новых ЯЭУ с конца 80х перемещается в диапазон бОльших мощностей, обычно от 100 кВт до 10 МВт, а главное — в почти полностью бумажную стадию.

Да, в рядовом режиме летают снабженные РИТЭГ межпланетные станции (например марсианский ровер Куриосити или спутник Сатурна Кассини), однако вслед за исчезновением с горизонта полетов людей на Марс, лунных баз и сверхтяжелых ГСО на два десятилетия замирает и практическая разработка новых реакторов.

Один из вариантов большой Юпитерианской АМС JIMO с реактором.

Я позволю себе промотать множество концептов и экспериментов, произошедших с 1988 года и перейду сразу к ослепительной звезде на небосклоне космических ЯЭУ — аппарату ТЭМ (транспортно энергетический модуль) с ядерным реактором РУГК.

Высокотемпературный быстрый реактор с газовым охлаждением тепловой мощностью в 3,8 мегаватта, газотурбинный преобразователь, капельные холодильники — этот проект по масштабу как минимум вдесятеро превосходил все предыдущие подходы “к турнику”.

Реактор ТЭМ и мегаваттный газотурбинный преобразователь.

Источник: https://cosmos.mirtesen.ru/blog/43639565537

Известия: Роскосмос отказался от ядерного двигателя

Роскосмос решил не тратить деньги на создание межорбитального буксира с ядерной электродвигательной установкой.

Запланированная прежде опытно-конструкторская работа «Разработка и наземные испытания ключевых элементов и технологий ядерных энергодвигательных установок для межорбитального буксира и межпланетных космических аппаратов» (ОКР «ЯЭДУ») вычеркнута из проекта Федеральной космической программы на 2016–2025 годы (ФКП-2025), переданной Роскосмосом на согласование в министерства.

Упоминания о ядерной установке в тексте ФКП-2025 сохранились исключительно в контексте научно-технического задела по системам перспективных космических аппаратов. Это означает, что исследования в части перспектив использования ЯЭДУ будут вестись, но пока в основном на бумаге.

Озвученные ранее планы выглядели внушительно: к 2017 году Научно-исследовательский и конструкторский институт энергетических технологий (НИКИЭТ, структура «Росатома») планирует построить ядерный реактор для будущего двигателя. Головной организацией по созданию самой энергодвительной установки является ФГУП «Центр Келдыша». А транспортный модуль собиралась строить РКК «Энергия». 

В 2010 году проект создания ядерного двигателя для космического аппарата был одобрен комиссией при президенте РФ по модернизации и технологическому развитию экономики России — проект называется «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса».

На проект тогда выделили 17 млрд рублей из федерального бюджета. В 2012 году Владимир Поповкин, возглавлявший в то время Роскосмос, объяснял, что опытный образец ядерного двигателя позволит принять решение — настало ли время создавать летный образец изделия.

Поповкин взвешенно относился к идее использования ядерных двигателей в космонавтике, отмечая, что они будут востребованы в относительно далекой перспективе для осуществления экспедиций в дальний космос.

Как раз при Поповкине была сформирована долгосрочная концепция развития пилотируемой космонавтики, где была определена стратегическая задача — высадка космонавтов на Луну в районе 2030 года.

Сейчас бюджет лунной программы Роскосмоса последовательно сокращается, а дата экспедиции также последовательно переносится вправо — теперь уже говорится, что высадка невозможна ранее 2035 года.

А с учетом прозвучавших в последнее время высказываний руководителей отрасли о необходимости обосновать лунную программу с точки зрения окупаемости затрат ее и вовсе могут перенести на более благополучные времена.

Но в любом случае для экспедиции на Луну Роскосмос выбрал другие средства. Так, проект ФКП-2025 предусматривает создание кислородно-водородного межорбитального буксира МОБ-КВТК, обеспечивающего выведение с околоземной орбиты на траекторию полета к Луне корабля весом до 38 т.

По идее, вслед за лунным проектом в случае его успешной реализации должен последовать Марс. Об этом тоже говорится в концепции развития пилотируемой космонавтики.

При подготовке экспедиции на Марс ядерный двигатель наверняка будет востребован — он позволит решить задачу по обеспечению корабля энергией.

Но если дата российской высадки на Луну плавно отодвигается к середине века, то полет на Марс тем более перестает выглядеть событием, к которому нужно готовиться уже сейчас. В этом смысле отказ Роскосмоса вкладываться в создание ядерного двигателя представляется логичным.

Официальный представитель Роскосмоса Игорь Буренков от комментариев воздержался.

Знакомый с ситуацией руководитель одного из предприятий Роскосмоса пояснил, что научно-исследовательские работы по ядерному двигателю будут продолжаться, но их финансирование, возможно, будет переведено в закрытую часть ФКП-2025, в рамках которой реализуются военные программы. Идею перевода работ в закрытую часть собеседник «Известий» объяснил острой реакцией американских коллег на разработку ядерных средств для космоса.

В департаменте коммуникаций госкорпорации «Росатом» отметили, что НИКИЭТ выполняет свою часть работ по проекту в рамках выделенного ранее финансирования и полностью укладывается в график, по которому в этом году должна состояться защита технического проекта реакторной установки.

Директор Центра Келдыша Анатолий Коротеев отметил, что Роскосмос пока не информировал его об отказе от опытно-конструкторских работ по теме ядерного двигателя.

— Если Роскосмос направил такой вариант ФКП на согласование, то пусть он ее согласовывает. Но мы продолжаем работы в рамках проекта, одобренного комиссией при президенте РФ по модернизации и технологическому развитию экономики России, — говорит Коротеев.

— Этот проект рассчитан до 2018 года, по нему мы имеем финансирование, и плакаться раньше времени я оснований не вижу. Будет ли ядерная тематика в итоговом варианте ФКП-2025 — это еще вопрос. Но проект обсуждался на очень высоком уровне, и нам было рекомендовано ускорить работы, а о том, что деньги заберут, речи не было.

Да, есть очень много трудностей по ходу реализации данного проекта, но финансовых проблем я пока не вижу.

Читайте также:  Современный истребитель танков в российской армии

Работы по созданию ядерных двигателей для космических аппаратов активно велись в СССР и США в прошлом веке: американцы закрыли проект в 1972 году, СССР — в 1988-м. Изначально перед советскими конструкторами ставилась задача создать ракетный двигатель, в котором реактор нагревал бы водород до температуры около 3 тыс. градусов.

Опытные образцы испытывались на ядерном полигоне в районе Семипалатинска. Созданные тогда экземпляры не были признаны безопасными: выбрасываемая двигателем струя в случае нештатной работы реактора оказывалась радиоактивно зараженной.

Поэтому сейчас НИКИЭТ разрабатывает реактор для космоса, работающий по более традиционной схеме: тепловая энергия при помощи турбины преобразуется в электрическую энергию, которая расходуется на питание электроракетных двигателей.

Источник: https://www.aex.ru/fdocs/1/2015/9/2/26228/

Россия планирует построить космический аппарат с ядерной электродвигательной установкой

В проекте Федеральной космической программы на 2016-2025 годы заложены работы по созданию летного образца космического аппарата с ядерной энергодвигательной установкой (ЯЭДУ), пишут «Известия». Демонстрационная версия такого аппарата должна быть готова к испытаниям в 2025 году. По словам специалистов, космические аппараты с ЯЭДУ нужны для экспедиций в дальний космос.

И действительно, без надежных и мощных источников энергии планирование масштабной межпланетной экспедиции практически невозможна.

Если для орбитальных космических аппаратов достаточно энергии, получаемой при помощи солнечных батарей, то для межпланетных космических кораблей (речь уже не о зондах, а о системах гораздо большего размера) нужно намного больше энергии.

Сам проект не является чем-то новым — еще в 2010 году комиссия при президенте по модернизации и технологическому развитию экономики одобрила проект «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса». На эту тематику было выделено около 17 миллиардов рублей из федерального бюджета.

И работы ведутся. «Все работы по созданию ЯЭДУ идут в соответствии с запланированными сроками. Мы можем с большой долей уверенности говорить, что работы будут сданы в срок, предусмотренный целевой программой.

За последнее время в рамках проекта пройдено два важных этапа: создана уникальная конструкция тепловыделяющего элемента, обеспечивающая работоспособность в условиях высоких температур, больших градиентов температур, высокодозного облучения.

Также успешно завершены технологические испытания корпуса реактора будущего космического энергоблока.

В рамках этих испытаний корпус подвергали избыточному давлению и проводили 3D-измерения в зонах основного металла, кольцевого сварного соединения и конического перехода», — говорит руководитель проекта департамента коммуникаций госкорпорации «Росатом» Андрей Иванов.

Как работает ЯЭДУ? Википедия говорит нам следующее: «ЯЭДУ иногда путают с ядерным ракетным двигателем, что не совсем корректно, так как ядерный реактор в ЯЭДУ используется только для выработки электроэнергии. Она, в свою очередь, используется для запуска и питания электрического ракетного двигателя (ЭРД), а также обеспечивает электропитание бортовых систем космического аппарата.

ЯЭДУ состоит из трех основных устройств: реакторной установки с рабочим телом и вспомогательными устройствами (теплообменник-рекуператор и турбогенератор-компрессор), электроракетной двигательной установки, холодильника-излучателя. Принцип действия ионного двигателя следующий.

В газоразрядной камере с помощью анодов и катодного блока, расположенных в магнитном поле, создается разреженная плазма. Из нее эмиссионным электродом «вытягиваются» ионы рабочего тела, ксенона или другого вещества и ускоряются в промежутке между ним и ускоряющим электродом.

Достоинствами ЯЭДУ являются возможность 10-летней эксплуатации, большой межремонтный интервал и продолжительное время работы на одном включении. С физической точки зрения ЯЭДУ это компактный газоохлаждаемый реактор на быстрых нейтронах»

Схожие проекты планировали реализовать и СССР с США, но после катастрофы на Чернобыльской АЭС все работы по таким проектам было решено свернуть. В мае 1988 году Федерация американских ученых и Комитет советских ученых за мир против ядерной угрозы заявили о необходимости запретить использование ядерной энергии в космосе.

Сейчас, насколько можно судить, эта тема вновь оказалась востребованной.

Источник: http://www.pvsm.ru/rossiya/109425

«Революционная разработка»: в чём уникальность российской космической ядерной установки

В России испытана система охлаждения ядерной энергодвигательной установки (ЯЭДУ) — одного из ключевых элементов космического аппарата будущего, на котором можно будет совершать межпланетные полёты. В частности, были протестированы экспериментальные образцы генератора капель, элементов заборного устройства и модели холодильника-излучателя.

Появление эффективной системы охлаждения снимает практически все препятствия для создания ЯЭДУ. Мощность первой установки составит 1 МВт, но в будущем увеличится в десять раз. Как полагают эксперты, достижение отечественных учёных станет существенным вкладом в развитие науки и экономики РФ. О перспективах технологии — в материале RT.

Российские учёные успешно испытали систему охлаждения ядерной энергодвигательной установки мегаваттного класса. Об этом сообщается в акте приёмки, размещённом на сайте госзакупок. В документе подчёркивается, что «работы выполнены в полном объёме, результаты соответствуют требованиям технического задания».

«Были выявлены закономерности функционирования элементов и узлов перспективных систем отвода тепла ЯЭДУ мегаваттного класса в наземных условиях, максимально приближенных к условиям космического пространства», — говорится в акте.

В документе уточняется, что специалисты изготовили и испытали экспериментальные образцы генератора капель, элементов заборного устройства (гидросборника) и модели капельного холодильника-излучателя (КХИ).

Разработкой КХИ занимаются ФГУП «Исследовательский центр им. Келдыша», Центр космических технологий Московского авиационного института, ОАО «РКК «Энергия» им. Королёва» и Московский энергетический институт.

ЯЭДУ — перспективный двигатель для космических аппаратов, который позволит совершать межпланетные полёты в несколько раз быстрее, чем сейчас. С его помощью Россия получит возможность проводить исследования Луны, Марса, дальних планет Солнечной системы и создавать там автоматические базы.

«Принцип работы ЯЭДУ заключается в том, что компактный ядерный реактор вырабатывает тепловую энергию, которая с помощью турбины преобразуется в электрическую. Она нужна для того, чтобы питать энергией ионные электрореактивные двигатели и оборудование», — пояснил в беседе с RT младший научный сотрудник НИИ ядерной физики им. Скобельцына МГУ Василий Петров.

Не имеет аналогов в мире

На современных двигателях низкопотенциальное (избыточное) тепло, которое может повредить бортовую аппаратуру, выводится в окружающее пространство (космос) через трубы панельных радиаторов, где циркулирует жидкость-теплоноситель. Такая система охлаждения представляет собой громоздкую конструкцию, не защищённую к тому же от попадания метеоритов. 

Российские учёные изобрели принципиально новую схему отвода тепла. С помощью генератора холодильник-излучатель формирует капельные струйки горячего теплоносителя, который охлаждается на пути к гидросборнику и, собираясь в нём, направляется снова в рабочий контур. Подобная технология не предусматривает использования труб и таким образом облегчает конструкцию системы охлаждения.

Также по теме

«В самое жерло огненной печи»: станция BepiColombo начала семилетний полёт к Меркурию

С космодрома Куру во Французской Гвиане состоялся запуск космического корабля в рамках миссии по изучению Меркурия BepiColombo —…

«Успешное испытание системы охлаждения означает, что российским учёным удалось решить ключевую проблему на пути создания ЯЭДУ. Дело в том, что у атомной силовой установки один большой недостаток — она очень сильно нагревается. Если на Земле ядерный реактор охлаждается под напором воды, то в космосе такая возможность отсутствует», — сказал Петров.

Инициатором создания ЯЭДУ считается академик отделения физико-технических проблем энергетики РАН, бывший генеральный директор ФГУП «Исследовательский центр им. Келдыша» Анатолий Коротеев. Головной разработчик атомной энергодвигательной установки — Научно-исследовательский и конструкторский институт энерготехники им. Н.А. Доллежаля (НИКИЭТ).

Создание ЯЭДУ ведётся в рамках запущенного в 2010 году проекта транспортно-энергетического модуля (ТЭМ), над которым работают предприятия «Росатома» и «Роскосмоса».

Согласно графику комиссии по модернизации при президенте РФ, опытный образец ядерного реактора мегаваттного класса должен появиться до конца 2018 года.

В материалах «Росатома» подчёркивается, что данный проект не имеет аналогов в мире.

«Реализация этого проекта позволит на базе уже имеющегося задела поднять отечественную технику на принципиально новый уровень, во многом опережающий зарубежные разработки», — заявил в октябре 2009 года на заседании комиссии по модернизации глава «Роскосмоса» (в 2004—2011 годах) Анатолий Перминов.

Как сообщил ранее генеральный конструктор НИКИЭТ доктор технических наук Юрий Драгунов, в основу ЯЭДУ лёг накопленный с 1960-х годов опыт создания ядерных ракетных двигателей, термоэлектрических энергоустановок и эксплуатации всевозможной космической техники. Мощность первого образца ядерной энергодвигательной установки он оценил в 1 МВт.

  • Ядерный реактор атомной электростанции
  • РИА Новости
  • © Алексей Даничев

Однако, как заявил Драгунов, в недалёком будущем Россия сможет производить 10-мегаваттные установки, «что подразумевает практически неограниченные возможности энергетики для космоса». По его словам, ЯЭДУ будет обладать более высоким коэффициентом полезного действия, так как тепловая энергия реактора не будет направляться на разогрев газовой смеси.

В процессе работы над космической атомной установкой специалисты ФГУП «НИИ НПО «Луч» (Подольск) впервые в мире разработали промышленную технологию создания монокристаллических длинномерных трубок из тугоплавких металлов (молибден, вольфрам, тантал, ниобий) и сплавов. Данное изобретение позволяет изготавливать агрегаты двигателей, способных работать при температуре 1500 °C.

«Очень востребованные разработки»

Василий Петров рассказал, что достижения при разработке ЯЭДУ и ТЭМ позволят создать управляемый с Земли необитаемый космический аппарат, который сможет быстрее и эффективнее транспортировать различные грузы на другие планеты и выполнять функции межорбитального буксира. Сегодня для аналогичных целей используется разгонный блок «Фрегат».

«Надо понимать, что «Фрегат» — это одноразовый аппарат, расходующий гигантское количество топлива. После выполнения своей задачи он сгорает. Конечно, это недешёвое удовольствие.

Гораздо экономичнее иметь в космосе многоразовое транспортное средство, которое человек будет использовать по необходимости, причём на протяжении десятков лет.

Это будет по-настоящему революционная разработка», — пояснил Петров.

Также по теме

Фактор полного цикла: как Россия налаживает производство новейших спутников

В России впервые создано предприятие, которое охватывает весь цикл производства модулей полезной нагрузки для перспективных…

Как полагает эксперт, ядерная энергодвигательная установка не несёт опасности для окружающей среды. Отработавший свой ресурс реактор может быть отправлен на «орбиту захоронения», куда уводятся аппараты после выхода из строя. Также Петров не исключает, что через десятки лет человечество изобретёт технологию утилизации ЯЭДУ.

«Создание компактных мощных ядерных реакторов и прогресс в системах охлаждения наверняка окажут серьёзный положительный эффект на развитие промышленности и экономики России. Это очень востребованные разработки в сфере энергетики, которые должны найти применение в самых разных сферах», — отметил Петров.

В беседе с RT военный эксперт Юрий Кнутов предположил, что ЯЭДУ и научно-технический прогресс, связанный с его изобретением, могут заинтересовать Минобороны РФ. По его мнению, технологический рывок, который совершили российские учёные, применим для совершенствования электромагнитного оружия, а также источников энергии для нужд ВКС и ВМФ.

«Ядерная энергия вполне может использоваться при разработке оружия с электромагнитным импульсом и как источник питания для различных средств разведки. Также эти наработки пригодятся для создания более эффективных и простых в эксплуатации морских силовых установок. Речь идёт о «вечном» ядерном реакторе с ресурсом на весь жизненный цикл атомной подлодки», — заявил Кнутов.

  • Подводный крейсер «Юрий Долгорукий»
  • РИА Новости

Эксперт также отметил, что в ближайшее время не стоит ожидать создания межпланетного корабля из-за невозможности на данный момент обеспечить 100%-ную защиту человека от солнечной радиации на расстоянии свыше 500 км от Земли. Кроме того, вспышки на Солнце будут пагубно влиять не только на экипаж, но и на электронику.

«Пока говорить о возможности создания корабля с ЯЭДУ преждевременно. Чтобы защитить экипаж, ему потребуется свинцовый корпус толщиной несколько метров. В итоге корабль будет громоздким и чрезвычайно дорогим.

Конечно, никто в это вкладывать деньги не будет. Но прогресс не стоит на месте.

С изобретением лёгкого прочного средства защиты перед Россией и человечеством откроются действительно невероятные перспективы», — резюмировал Кнутов.

Источник: https://russian.rt.com

Источник: http://www.slavic-europe.eu/index.php/articles/57-russia-articles/9832-2018-11-04-20-06-47

Ссылка на основную публикацию