Нейтронные звезды: что известно человечеству об этом явлении

Гравитационные волны от слияния нейтронных звезд: золотая эра для астрономии

В понедельник стало известно о беспрецедентном явлении — впервые зафиксированных учеными LIGO и Virgo гравитационных волнах от слияния двух нейтронных звезд. Это событие уже называется началом новой эпохи в астрофизике, но почему именно оно так важно?

Мы побеседовали с Аланом Джей Вайнштайном -профессором физики и главой группы анализа астрофизических данных из лаборатории LIGO в Калифорнийском технологическом институте. Он рассказал, почему произошедшее имеет такое значение, и как может изменить существующее понимание Вселенной.

Все говорят, что произошло «беспрецедентное» явление. В чем его значимость?

В первый раз наша научная команда и детекторы LIGO засекли гравитационные волны в сентябре 2015, при столкновении двух черных дыр.

Это подтвердило значимую гипотезу теории относительности Эйнштейна, предоставило нам новые возможности по изучению черных дыр, позволило стать свидетелями мощнейшего явления со времен Большого взрыва и, в какой-то мере, дало возможность услышать вибрации самого пространства-времени. С тех пор мы зафиксировали еще несколько подобных явлений.

Но 17 августа 2017 года мы увидели нечто другое. Это было слияние двух ультракомпактных светил – не черных дыр, а нейтронных звезд. Они состоят из чистого ядерного материала, так что это весьма экзотическая и интересная тема для физиков и астрономов. Но главное, что, в отличие от черных дыр, они излучают свет — в больших количествах.

Мы впервые стали свидетелями такого масштабного астрономического явления, являвшегося источником и гравитационных волн и света. Мы наблюдали свет во всех его многочисленных проявлениях: не только видимое излучение, но и ультрафиолетовое, инфракрасное, рентгеновское и гамма-излучение, радио-волны.

Так мы смогли «увидеть» и «услышать» это необычайное явление самыми разными способами.

Произошедшее подтвердило связь между слиянием двойных нейтронных звезд и гамма-всплесками (GRB), определило вероятное местоположение синтеза тяжелых элементов во вселенной, позволило нам впервые измерить скорость и поляризацию гравитационных волн. Благодаря гравитационным волнам, событие стало началом эры multi-messenger astronomy.

Теперь у физиков и астрономов есть возможность многое узнать об этомневероятно многогранном процессе, мы все еще продолжаем исследовать произошедшее и узнавать что-то новое.

Но если говорить о важности данного события в практическом и общечеловеческом смысле, оно предоставляет нам информацию о происхождении самых тяжелых химических элементов, включая драгоценные металлы в наших ювелирных изделиях.

В результате столкновения появилось золото, свинец и платина. Человек не слишком близкий к миру науки (как я, например) это видит похожим на взрыв золотой пыли, но, конечно, все намного сложнее. 

Нейтронные звезды это чистый ядерный материал, который, при столкновении, выбрасывается в межзвездное пространство в огромном количестве.

Он расщепляется, а затем объединяется в богатые нейтронами атомные ядра, которые становятся тяжелыми элементами — не только золотом, свинцом и платиной, но и ураном, плутонием, большинством других самых тяжелых элементов периодической таблицы. Они рассеиваются по своей галактике (которая, в случае GW170817, очень далеко).

Подобные столкновения происходят в нашем Млечном Пути примерно раз в 10-100 тысяч лет. Оставшиеся после них фрагменты тяжелых элементов попадают в нашу солнечную систему и на Землю.

Столкновение важно по ряду причин. Уже говорят о том, что оно станет началом новой эры для астрономии. Это действительно так?

Да! Мы обнаружим еще много подобных явлений, различных звездных масс в различных галактических средах.

Это позволит нам узнать многое об образовании, развитии и угасании самых массивных звезд и укрепить новое понимание происхождения самых тяжелых химических элементов.

Результаты этих исследований появятся в учебниках, так что, когда мы говорим о блестящем будущем, – или даже золотом, то действительно имеем это в виду.

Столкновение предоставило новую возможность для изучения гравитационных волн и Вселенной. Что нового узнают ученые благодаря такой находке?

Мы сможем измерять скорость расширения Вселенной с постоянно улучшающейся точностью. Есть много способов это сделать, но у нас появился другой совершенно новый метод. Если во всех случаях мы придем к одинаковым выводам, то укрепим наше понимание Большого взрыва. Если нет, то мы будем знать, что неправильно поняли какие-то данные, нуждаемся в теории получше или упустили что-то важное.

Мы будем получать при изучении фундаментальных свойств гравитационных волн все более точную информацию. Это позволит нам подвергнуть общую теорию относительности Эйнштейна, современную теорию гравитации, еще более суровым испытаниям. Мы подозреваем, что в конце концов обнаружим, что она не совсем верна, и это укажет на более глубокую и точную теорию.

Нечто подобное столкновению нейтронных звезд происходит необыкновенно редко. Когда ученые станут свидетелями чего-то подобного снова?

Такие явления можно наблюдать в Млечном Пути каждые 10-100 тысяч лет.

Нам не придется так долго ждать! Наши нынешние детекторы LIGO способны наблюдать подобные столкновения в отдаленных галактиках, более чем в миллионе.

Сейчас мы улучшаем чувствительность наших детекторов, чтобы быть в состоянии зафиксировать данные явления в сотнях миллионов галактик. Так что мы надеемся наблюдать нечто подобное каждый год.

Гравитационные волны от слияния нейтронных звезд: золотая эра для астрономии обновлено: Октябрь 17, 2017 автором: Анастастия Бельская

Источник: https://usa.one/2017/10/gravitacionnye-volny-ot-sliyaniya-nejtronnyx-zvezd-zolotaya-era-dlya-astronomii/

Нейтронная звезда

Нейтронная звезда — очень быстро вращающееся тело, оставшееся после взрыва сверхновой звезды.

При диаметре 20 километров это тело имеет массу сравнимую с солнечной, один грамм нейтронной звезды весил бы в земных условиях более 500 миллионов тонн! Такая огромная плотность возникает от вдавливания электронов в ядра, от чего они объединяются с протонами и образуют нейтроны.

 По сути, нейтронные звезды по свойствам, включая плотность и состав, очень похожи на атомные ядра.Но есть существенная разница: в ядрах нуклоны притягивает сильное взаимодействие, а в звездах – сила гравитации.

Что из себя представляет

Для того, чтобы понять, что же из себя представляют эти загадочные объекты мы настоятельно рекомендуем обратиться к выступлениям

Состав нейтронных звёзд

Состав этих объектов (по понятным причинам) изучен пока только в теории и математических расчетах. Однако, известно уже многое. Как и следует из названия, состоят они преимущественно из плотно упакованных нейтронов.

Атмосфера нейтронной звезды имеет толщину всего несколько сантиметров, но в ней сосредоточено все её тепловое излучение. За атмосферой находится кора, состоящая из плотно упакованных ионов и электронов. В середине находится ядро, состоящее из нейтронов.

Ближе к центру достигается максимальная плотность вещества, которая в 15 раз больше ядерной. Нейтронные звезды — самые плотные объекты во вселенной.

Если попытаться и далее увеличивать плотность вещества произойдет коллапс в черную дыру, или образуется кварковая звезда.

Магнитное поле

Нейтронные звёзды имеют скорости вращения до 1000 оборотов в секунду. При этом электропроводящие плазма и ядерное вещество вырабатывают магнитные поля гигантских величин.

Для примера — магнитное поле Земли -1 гаусс, нейтронной звезды —  10 000 000 000 000 гаусс. Самое сильное поле, созданное человеком, будет в миллиарды раз слабее.

Типы нейтронных звезд

Пульсары

Это обобщающее название для всех нейтронных звезд. Пульсары имеют четко определенный период вращения, который не меняется очень долгое время. Благодаря этому свойству их прозвали «маяками вселенной»

Частицы узким потоком на очень высоких скоростях вылетают через полюса, становясь источником радиоизлучения. Из-за несовпадения осей вращения, направление потока постоянно меняется, создавая эффект маяка. И, как у каждого маяка, у пульсаров своя частота сигнала, по которой его можно идентифицировать.

Практически все обнаруженные нейтронные звёзды существуют в двойных рентгеновских системах или в качестве одиночных пульсаров.

Магнетары

При рождении очень быстро крутящейся нейтронной звезды, общие вращение и конвекция создают громадное магнитное поле. Это происходит за счёт процесса «активного динамо». Это поле превышает величины полей обычных пульсаров в десятки тысяч раз.

Действие динамо заканчивается через 10 – 20 секунд, и происходит охлаждение атмосферы звезды, но магнитное поле успевает возникнуть заново за этот срок. Оно неустойчиво, и быстрая смена его структуры порождает выброс гигантского количества энергии.

Получается, что магнитное поле звезды разрывает её саму. Кандидатов на роль магнетаров в нашей галактике насчитывается около десятка. Появление его возможно из звезды, превосходящей минимум в 8 раз массу нашего Солнца.

Размеры же их порядка 15 км в диаметре, при массе около одной солнечной. Но достаточного подтверждения существования магнетаров пока не получено.

Рентгеновские пульсары

Они считаются другой фазой жизни магнетара и излучают исключительно в рентгеновском диапазоне. Излучение возникает в результате взрывов, имеющих определённый период.

Некоторые нейтронные звёзды появляются в двойных системах или же приобретают компаньона, захватив его в свое гравитационное поле. Такой компаньон будет отдавать своё вещество агрессивной соседке. Если компаньон нейтронной звезды по массе не меньше Солнца, то возможны интересные явления – барстеры. Это рентгеновские вспышки, продолжительностью в секунды или минуты.

Но они способны усилить светимость звезды до 100 тыс. солнечных. Перенесённые с компаньона водород и гелий наслаиваются на поверхности барстера. Когда слой становится очень плотным и горячим, запускается термоядерная реакция. Мощность такого взрыва невероятна: на каждом квадратном сантиметре звезды выделяется мощь, эквивалентная взрыву всего земного ядерного потенциала.

При наличии компаньона-гиганта, вещество теряется им в виде звёздного ветра, а нейтронная звезда втягивает его своей гравитацией. Частицы летят по силовым линиям по направлению к магнитным полюсам. При несовпадении магнитной оси  и  оси вращения, яркость звезды будет переменной. Получается рентгеновский пульсар.

Миллисекундные пульсары

Они тоже связаны с двойными системами и обладают самыми короткими периодами (меньше 30 миллисекунд). Вопреки ожиданиям, они оказываются не самыми молодыми, а достаточно старыми.

Старая и медленная нейтронная звезда поглощает материю компаньона-гиганта. Падая на поверхность захватчика, материя придаёт ей вращательную энергию, и вращение звезды усиливается.

Постепенно компаньон превратится в белого карлика, потеряв в массе.

Экзопланеты у нейтронных звезд

Первую экзопланету открыли при исследовании радиопульсара. Так как нейтронные звезды очень стабильны, возможно очень точно отслеживать находящиеся рядом планеты с массами, намного меньшими массы Юпитера.

Очень легко отыскалась планетная система у пульсара PSR 1257+12, удалённого от Солнца на 1000 световых лет. Рядом со звездой три планеты, имеющие массы 0,2, 4,3 и 3,6 масс Земли с периодами обращений в 25, 67 и 98 суток. Позже нашлась ещё одна планета с массой Сатурна и периодом обращения 170 лет. Также известен пульсар с планетой немного массивнее Юпитера.

На самом деле парадоксально, что возле пульсара существуют планеты. Нейтронная звезда рождается в результате взрыва сверхновой, и та теряет основную часть своей массы. Оставшаяся часть уже не обладает достаточной гравитацией для удержания спутников. Вероятно, найденные планеты образовались уже после катаклизма.

Исследования

Число известных нейтронных звёзд около 1200. Из них 1000 считаются радиопульсарами, а остальные определены как рентгеновские источники. Изучать эти объекты невозможно, послав к ним какой-либо аппарат.

 В кораблях «Пионер» были отправлены послания разумным существам. И местоположение нашей Солнечной системы указано именно с ориентацией на ближайшие к Земле пульсары. От Солнца линиями показаны направления на эти пульсары и расстояния до них.

А прерывистость линии обозначает период их обращения.

Ближайший к нам нейтронный сосед расположен в 450 световых годах. Это двойная система – нейтронная звезда и белый карлик, период её пульсации 5,75 миллисекунды.

Вряд ли возможно оказаться рядом с нейтронной звездой и остаться в живых. Можно только фантазировать на эту тему.

Да и как представить выходящие за границы разума величины температуры, магнитного поля и давления? Но пульсары ещё помогут нам в освоении межзвёздного пространства.

Любое, даже самое дальнее галактическое путешествие, окажется не гибельным, если будут работать стабильные маяки, видимые во всех уголках Вселенной.

Читайте также:  Зимний и летний камуфляж: как военная одежда прижилась в быту

Источник: http://light-science.ru/kosmos/vselennaya/nejtronnaya-zvezda.html

Нейтронные звезды: что известно человечеству об этом явлении

С момента зарождения Вселенной прошло уже более десятка миллиарда лет, в течение которых происходит звездная эволюция, осуществляется изменение состава космического пространства.

Одни космические объекты исчезают, а на их месте появляются другие.

Этот процесс происходит постоянно, однако из-за огромных временных промежутков, мы в состоянии наблюдать только один единственный кадр колоссальной и увлекательной мультисессии.

Живая Вселенная

Мы видим Вселенную во всей красе, наблюдая жизнь звезд, этапы эволюции и момент предсмертной агонии. Смерть звезды – это всегда грандиозное и яркое событие. Чем крупнее и массивнее звезда, тем масштабнее катаклизм.

Нейтронная звезда является ярким примером такой эволюции, живым памятником былого звездного могущества. В этом и заключается весь парадокс.

На месте массивной звезды, размеры и масса которой в десятки и сотни раз превышают аналогичные параметры нашего Солнца, возникает крошечное небесное тело диаметром в пару десятков километров. Такое превращение не происходит в один момент.

Образование нейтронных звезд — результат длинного эволюционного пути развития космического монстра, растянутого в пространстве и во времени.

Образование нейтронной звезды

Физика нейтронных звезд

Подобные объекты немногочисленны во Вселенной, как может показаться на первый взгляд. Как правило, нейтронная звезда может быть одна на тысячу звезд.

Секрет такого небольшого числа заключается в уникальности эволюционных процессов, которые предшествуют рождению нейтронных звезд. Все звезды по-разному проживают свою жизнь. По-разному выглядит и финал звездной драмы. Масштабы действа определяются массой звезды.

Чем больше масса космического тела, чем массивнее звезда, тем выше вероятность того что ее смерть будет быстрой и яркой.

Взрыв Сверхновой

Постоянно увеличившиеся силы гравитации приводят к трансформации звездного вещества в тепловую энергию. Этот процесс невольно сопровождается колоссальным выбросом – взрывом Сверхновой. Результатом такого катаклизма становится новый космический объект – нейтронная звезда.

Проще говоря, звездная материя перестает быть топливом, термоядерные реакции утрачивают свою интенсивность и не в состоянии поддерживать в недрах массивного тела необходимые температуры. Выходом из создавшегося состояния становится коллапс — обрушение звездного газа на центральную часть звезды.

Все это приводит к мгновенному высвобождению энергии, разбрасывающей внешние слои звездной материи во все стороны. На месте звезды возникает расширяющаяся туманность. Такая трансформация может произойти с любой звездой, однако при этом результаты коллапса могут быть разными.

Если масса космического объекта невелика, к примеру, мы имеем дело с желтым карликом вроде Солнца, на месте вспышки остается белый карлик. В том случае, если масса космического монстра превышает солнечную массу в десятки раз, в результате обрушения мы наблюдаем вспышку Сверхновой.

На месте былого звездного величия образуется нейтронная звезда. Сверхмассивные звезды, масса которых в сотни раз больше массы Солнца, завершают свой жизненный цикл, нейтронная звезда является промежуточным этапом.

Продолжающееся гравитационное сжатие приводит к тому, что жизнь нейтронной звезды завершается появлением черной дыры.

Варианты развития

В результате коллапса от звезды остается только ядро, продолжающееся сжиматься. В связи с этим, характерной особенностью нейтронных звезд являются высокая плотность и огромная масса при мизерных размерах.

Так масса нейтронной звезды диаметром 20 км. в 1,5-3 раза больше массы нашей звезды. Происходит уплотнение или нейтронизация электронов и протонов в нейтроны.

Соответственно, при уменьшении объема и размеров, стремительно увеличивается плотность и масса звездного вещества.

Состав нейтронных звезд

Точная информация о составе нейтронных звезд отсутствует. На сегодняшний день ученые-астрофизики при изучении подобных объектов пользуются рабочей моделью, предложенной физиками – ядерщиками.

Строение нейтронной звезды

Предположительно, звездное вещество в результате коллапса трансформируется в нейтронную, сверхтекучую жидкость. Этому способствует огромное гравитационное притяжение, оказывающее постоянное давление на вещество. Такая «ядерная жидкая субстанция» называется вырожденный газ и в 1000 раз плотнее воды.

Атомы вырожденного газа состоят из ядра и электронов, вращающихся вокруг него. При нейтронизации внутреннее пространство атомов под воздействием сил гравитации исчезает. Электроны сливаются с ядром, образуя нейтроны. Устойчивость сверхплотной субстанции придает внутренняя гравитация.

В противном случае неизбежно началась бы цепная реакция, сопровождающаяся ядерным взрывом.

Гравитационный коллапс

Чем ближе к внешнему краю звезды, тем меньше температура и давление.

В результате сложных процессов происходит «остывание» нейтронной субстанции, из которой интенсивно выделяются ядра железа.

Коллапс и последующий взрыв является фабрикой планетарного железа, которое распространяется в космическом пространстве, становясь строительным материалом при формировании планет.

Парадоксы рождения нейтронных звезд

Первая версия о том, что нейтронные звезды — продукты взрыва Сверхновой, сегодня не является постулатом. Существует теория, что здесь может быть использован и другой механизм.

В двойных звездных системах пищей для новых звезд становятся белые карлики. Звездное вещество постепенно перетекает из одного космического объекта на другой, увеличивая его массу до состояния критической.

Другими словами, в будущем один из пары белый карлик – это нейтронная звезда.

Звезды-компаньоны

Нередко одиночная нейтронная звезда, пребывая в тесном окружении звездных скоплений, обращает свое внимание на ближайшую соседку. Компаньонами нейтронных звезд могут стать любые звезды. Эти пары возникают довольно часто. Последствия такой дружбы зависят от массы компаньона.

Если масса нового компаньона невелика, то украденное звездное вещество будет скапливаться вокруг в виде аккреционного диска. Этот процесс, сопровождаемый большим периодом вращения, приведет к тому, что звездный газ разогреется до температуры в миллион градусов.

Нейтронная звезда вспыхнет потоком рентгеновского излучения, становясь рентгеновским пульсаром. У этого процесса есть два пути:

    звезда остается в космосе тусклым небесным телом;тело начинает излучать короткие рентгеновские вспышки (барстеры).

Во время рентгеновских вспышек яркость звезды стремительно увеличивается, делая такой объект в 100 тысяч раз ярче Солнца.

Барстеры

История изучения нейтронных звезд

Нейтронный звезды стали открытием второй половины XX века. Ранее обнаружить подобные объекты в нашей галактике и во Вселенной было технически невозможно.

Тусклый свет и малые размеры таких небесных тел не позволяли их обнаружить с помощью оптических телескопов. Несмотря на отсутствие визуального контакта, существование подобных объектов в космосе предсказывали теоретически.

Первая версия о существовании звезд с огромной плотностью появилась с подачи советского ученого Л. Ландау в 1932 году.

Фриц Цвикки и Вальтер Бааде

Через год, в 1933 году уже за океаном было сделано серьезное заявление о существовании звезд с необычным строением. Астрономы Фриц Цвикки и Вальтер Бааде выдвинули обоснованную теорию, что на месте вспышки Сверхновой обязательно остается нейтронная звезда.

В 60-е годы XX столетия обозначился прорыв в астрономических наблюдениях. Этому способствовало появление рентгеновских телескопов, способных выявлять в космосе источники мягкого рентгеновского излучения.

Используя в наблюдениях теорию о существовании в космосе источников сильного теплового излучения, астрономы пришли к выводу, что мы имеем дело с новым типом звезд. Весомым дополнением теории о существовании нейтронных звезд стало открытие в 1967 году пульсаров.

Американец Джоселин Белл с помощью своей радиоаппаратуры обнаружил поступающие из космоса радиосигналы. Источником радиоволн являлся стремительно вращающийся объект, который действовал подобно радиомаяку, посылая сигналы во все стороны.

Ближайшая нейтронная звезда

Такой объект непременно имеет большую скорость вращения, что для обычной звезды стало бы фатальным. Первым пульсаром, который был открыт астрономами, является PSR В1919+21, находящийся на расстоянии 2283,12 св. года от нашей планеты.

По мнению ученых, ближайшей нейтронной звездой к Земле является космический объект RX J1856.5-3754, расположенный в созвездии Южная Корона, который был открыт в 1992 году в обсерватории Чандра.

Расстояние от Земли до ближайшей нейтронной звезды составляет 400 световых лет.

Источник: http://chert-poberi.ru/interestnoe/neytronnyie-zvezdyi-chto-izvestno-chelovechestvu-ob-etom-yavlenii.html

Ученые зафиксировали гравитационные волны от слияния нейтронных звезд. Почему это важно? Объясняет сайт N+1 — Meduza

GiroScience / Alamy / Vida Press

16 октября астрономы сообщили, что 17 августа впервые в истории зафиксировали гравитационные волны от слияния двух .

Наблюдениями занимались 70 групп ученых, а соавторами одной из статей, посвященных этому событию, стали 4600 астрономов — больше трети всех астрономов мира.

Сайт N+1 в большой статье рассказал, почему это важное открытие и на какие вопросы оно поможет ответить. «Медуза» с разрешения редакции N+1 публикует эту статью целиком.

17 августа 2017 года, в 15:41:04 по московскому времени детектор обсерватории LIGO в Хенфорде (Вашингтон) услышал рекордно длинную гравитационную волну — сигнал продолжался около ста секунд.

Это очень большой промежуток времени — для сравнения, предыдущие четыре фиксации гравитационных волн длились не дольше трех секунд. Сработала автоматическая программа оповещения.

Астрономы проверили данные: оказалось, что второй детектор LIGO (в Луизиане) тоже зафиксировал волну, но автоматический триггер не сработал из-за краткосрочных шумов.

На 1,7 секунды позже детектора в Хенфорде, независимо от него, сработала автоматическая система телескопов «Ферми» и «Интеграл» — космических гамма-обсерваторий, наблюдающих одни из самых высокоэнергетических событий во Вселенной.

Приборы обнаружили яркую вспышку и примерно определили ее координаты. В отличие от гравитационного сигнала, вспышка длилась всего две секунды. Интересно, что российско-европейский «Интеграл» заметил гамма-всплеск «боковым зрением» — «защитными кристаллами» основного детектора.

Тем не менее, это не помешало триангуляции сигнала.

Примерно через час LIGO разослал сведения о возможных координатах источника гравитационных волн — установить эту область удалось благодаря тому, что сигнал заметил и детектор Virgo.

По задержкам, с которыми детекторы начали получать сигнал, стало ясно, что, вероятнее всего, источник находится в южном полушарии: сперва сигнал достиг Virgo и лишь затем, спустя 22 миллисекунды, был зафиксирован обсерваторией LIGO.

Изначальная область, рекомендуемая для поиска, достигала 28 квадратных градусов, что эквивалентно сотням площадей Луны.

Следующим этапом было объединение данных гамма- и гравитационных обсерваторий воедино и поиск точного источника излучения. Так как ни гамма-телескопы, ни тем более гравитационные не позволяли найти требуемую точку с большой точностью, физики инициировали сразу несколько оптических поисков. Один из них — с помощью роботизированной системы телескопов «МАСТЕР», разработанной в ГАИШ МГУ.

Наблюдение за килоновой Европейской южной обсерватории

European Southern Observatory (ESO)

Обнаружить среди тысяч возможных кандидатов нужную вспышку удалось чилийскому метровому телескопу Swope — почти через 11 часов после гравитационных волн. Астрономы зафиксировали новую светящуюся точку в галактике NGC 4993 в созвездии Гидры, ее яркость не превышала 17 звездной величины. Такой объект вполне доступен для наблюдения в полупрофессиональные телескопы.

В течение примерно часа после этого, независимо от Swope, источник нашли еще четыре обсерватории, в том числе аргентинский телескоп сети «МАСТЕР».

После этого началась масштабная наблюдательная кампания, к которой присоединились телескопы Южной европейской обсерватории, «Хаббл», «Чандра», массив радиотелескопов VLA и множество других приборов — в сумме более 70 групп ученых наблюдали за развитием событий.

Через девять дней астрономам удалось получить изображение в рентгеновском диапазоне, а через 16 дней — в радиочастотном. К сожалению, через некоторое время Солнце приблизилось к галактике и в сентябре наблюдения стали невозможными.

Что стало причиной взрыва?

Такая характерная картина взрыва во многих электромагнитных диапазонах была предсказана и описана уже давно. Она соответствует столкновению двух нейтронных звезд — ультракомпактных объектов, состоящих из нейтронной материи.

По словам ученых, масса нейтронных звезд составляла 1,1 и 1,6 массы Солнца (сравнительно точно определена суммарная масса — около 2,7 массы Солнца). Первые гравитационные волны возникли, когда расстояние между объектами составляло 300 километров.

Большой неожиданностью стало небольшое расстояние от этой системы до Земли — около 130 миллионов световых лет.

Для сравнения, это всего в 50 раз дальше, чем от Земли до Туманности Андромеды, и почти на порядок меньше, чем расстояние от нашей планеты до черных дыр, столкновение которых фиксировали ранее LIGO и Virgo.

Кроме того, столкновение стало самым близким к Земле источником короткого гамма-всплеска.

Двойные нейтронные звезды известны с 1974 года — одну из таких систем открыли нобелевские лауреаты Рассел Халс и Джозеф Тейлор.

Читайте также:  Немецкий линейный корабль «бисмарк»: супердредноут гитлера

Однако до сих пор все известные двойные нейтронные звезды находились в нашей Галактике, а стабильность их орбит была достаточной, чтобы они не столкнулись в течение ближайших миллионов лет.

Новая пара звезд сблизилась настолько, что началось взаимодействие и стал развиваться процесс переноса вещества

Столкновение двух нейтронных звезд. Анимация Nasa

caltech

Событие получило название килоновой. Дословно это означает, что яркость вспышки была примерно в тысячу раз мощнее, чем типичные вспышки новых звезд — двойных систем, в которых компактный компаньон перетягивает на себя материю.

Что все это значит?

Полный спектр собранных данных уже позволяет ученым называть событие краеугольным камнем будущей гравитационно-волновой астрономии.

По результатам обработки данных за два месяца было написано около 30 статей в крупных журналах: по семь в Nature и Science, а также работы в Astrophysical Journal Letters и других научных изданиях.

Соавторами одной из этих статей являются 4600 астрономов из различных коллабораций — это больше трети всех астрономов мира.

Вот ключевые вопросы, к ответам на которые ученым впервые удалось подойти по-настоящему.

Что запускает короткие гамма-всплески?

Гамма-всплески — это одни из самых высокоэнергетических явлений во Вселенной.

Мощность одного такого всплеска достаточна, чтобы за секунды выбросить в окружающее пространство столько же энергии, сколько Солнце генерирует за 10 миллионов лет.

Различают короткие и длинные гамма-всплески; при этом считается, что это различные по своему механизму явления. К примеру, источником длинных всплесков считаются коллапсы массивных звезд.

Источниками коротких гамма-всплесков предположительно являются слияния нейтронных звезд. Однако до сих пор прямых подтверждений этому не было. Новые наблюдения — самое веское на сегодняшний день доказательство существования этого механизма.  

Откуда во Вселенной берутся золото и другие тяжелые элементы?

Нуклеосинтез — слияние ядер в звездах — позволяет получить огромный спектр химических элементов. Для легких ядер реакции слияния протекают с выделением энергии и в целом энергетически выгодны.

Для элементов, чья масса близка к массе железа, энергетический выигрыш оказывается уже не настолько большим. Из-за этого в звездах почти не образуются элементы тяжелее железа — исключением являются взрывы сверхновых.

Но их совершенно недостаточно, чтобы объяснить распространенность золота, лантанидов, урана и других тяжелых элементов во Вселенной.

В 1989 году физики предположили, что за это может отвечать r-нуклеосинтез в слияниях нейтронных звезд. Подробнее об этом можно прочитать в блоге астрофизика Марата Мусина. До сегодняшнего дня этот процесс был известен лишь в теории.

Спектральные исследования нового события показали отчетливые следы рождения тяжелых элементов. Так, благодаря спектрометрам Очень большого телескопа (VLT) и «Хаббла» астрономы обнаружили присутствие цезия, теллура, золота и платины.

Также есть свидетельства образования ксенона, иода и сурьмы. По оценкам физиков, в результате столкновения была выброшена общая масса легких и тяжелых элементов, эквивалентная 40 массам Юпитера.

Одного лишь золота, согласно теоретическим моделям, образуется около 10 масс Луны.

Чему равна константа Хаббла?

Оценить экспериментально скорость расширения Вселенной можно с помощью специальных «стандартных свечей». Это объекты, для которых известна абсолютная яркость, а значит, по соотношению между абсолютной и видимой яркостью можно сделать вывод о том, как далеко они находятся.

Скорость расширения на данном расстоянии от наблюдателя определяется по доплеровскому смещению, например, линий водорода. Роль «стандартных свечей» играют, например, сверхновые Ia типа («взрывы» белых карликов) — кстати, именно на их выборке было доказано расширение Вселенной.

Наблюдение за слиянием двух нейтронных звезд с телескопа в Паранальской обсерватории (Чили)

European Southern Observatory (ESO)

Константа Хаббла задает линейную зависимость скорости расширения Вселенной на данном расстоянии. Каждое независимое определение ее значения позволяет нам убедиться в справедливости принятой космологии.

Источники гравитационных волн тоже являются «стандартными свечами» (или, как их называют в статье, «сиренами»). По характеру гравитационных волн, которые они создают, можно независимо определить расстояние до них. Именно этим воспользовались астрономы в одной из новых работ.

Результат совпал с другими независимыми измерениями — на основе реликтового излучения и наблюдения за гравитационно-линзированными объектами. Константа примерно равна 62–82 километрам в секунду на мегапарсек. Это означает, что две галактики, удаленные на 3,2 миллиона световых лет, в среднем разбегаются со скоростью 70 километров в секунду.

Новые слияния нейтронных звезд помогут увеличить точность этой оценки.

Как устроена гравитация?

Общепринятая на сегодняшний день общая теория относительности в точности предсказывает поведение гравитационных волн. Однако квантовая теория гравитации до сих пор не разработана.

Есть несколько гипотез о том, как она может быть устроена — это теоретические конструкции с большим количеством неизвестных параметров.

Одновременное наблюдение электромагнитного излучения и гравитационных волн позволит уточнить и сузить границы для этих параметров, а также отбросить некоторые гипотезы.

К примеру, тот факт, что гравитационные волны пришли за 1,7 секунды до гамма-квантов, подтверждает то, что они и правда распространяются со скоростью света. Кроме того, сама величина задержки может быть использована для проверки принципа эквивалентности, лежащего в основе ОТО.

Как устроены нейтронные звезды?

Мы знаем строение нейтронных звезд лишь в общих чертах. У них имеются кора из тяжелых элементов и нейтронное ядро — но, к примеру, нам до сих пор не известно уравнение состояния нейтронной материи в ядре. А от этого зависит, например, ответ на такой простой вопрос: что именно образовалось при столкновении, которое наблюдали астрономы?

Визуализация гравитационных волн от слияния двух нейтронных звезд

caltech

Как и у белых карликов, у нейтронных звезд есть понятие критической массы, при превышении которой может начаться коллапс. В зависимости от того, превзошла ли масса нового объекта критическую или нет, есть несколько сценариев дальнейшего развития событий. Если суммарная масса окажется слишком большой, то объект сразу коллапсирует в черную дыру.

Если масса немного меньше, то может возникнуть неравновесная быстровращающаяся нейтронная звезда, которая тоже, впрочем, со временем коллапсирует в черную дыру. Альтернативный вариант — образование магнетара, быстровращающейся нейтронной дыры с огромным магнитным полем.

По всей видимости, магнетар в столкновении не образовался — сопутствующее ему жесткое рентгеновское излучение зафиксировано не было.

По словам Владимира Липунова, руководителя сети «МАСТЕР», имеющихся сейчас данных недостаточно, чтобы выяснить, что же именно образовалось в результате слияния. Однако у астрономов уже есть ряд теорий, которые будут опубликованы в ближайшие дни. Возможно, из будущих слияний нейтронных звезд удастся определить искомую критическую массу.

Источник: https://meduza.io/feature/2017/10/17/uchenye-zafiksirovali-gravitatsionnye-volny-ot-sliyaniya-neytronnyh-zvezd-pochemu-eto-vazhno

Рождение золота

В понедельник, 16 октября, гравитационно-волновая обсерватория LIGO и целый ряд других крупных международных научных групп сообщили о чрезвычайно важном для современной астрономии открытии.

Более 70 обсерваторий, работающих во всех диапазонах электромагнитного спектра, а также все три действующие гравитационно-волновые обсерватории впервые зафиксировали во всех подробностях слияние двух нейтронных звезд.

В этом материале мы расскажем, что же именно наблюдали астрономы и на какие вопросы о нашей Вселенной помогает ответить новое исследование.

Как все произошло?

17 августа 2017 года, в 15:41:04 по московскому времени детектор обсерватории LIGO в Хенфорде (Вашингтон) услышал рекордно длинную гравитационную волну — сигнал продолжался около ста секунд.

Это очень большой промежуток времени — для сравнения, предыдущие четыре фиксации гравитационных волн длились не дольше трех секунд. Сработала автоматическая программа оповещения.

Астрономы проверили данные: оказалось, что второй детектор LIGO (в Луизиане) тоже зафиксировал волну, но автоматический триггер не сработал из-за краткосрочных шумов.

На 1,7 секунды позже детектора в Хенфорде, независимо от него, сработала автоматическая система телескопов «Ферми» и «Интеграл» — космических гамма-обсерваторий, наблюдающих одни из самых высокоэнергетических событий во Вселенной.

Приборы обнаружили яркую вспышку и примерно определили ее координаты. В отличие от гравитационного сигнала, вспышка длилась всего две секунды. Интересно, что российско-европейский «Интеграл» заметил гамма-всплеск «боковым зрением» — «защитными кристаллами» основного детектора.

Тем не менее, это не помешало триангуляции сигнала.

Примерно через час LIGO разослал сведения о возможных координатах источника гравитационных волн в обсерватории по всему миру — установить эту область удалось благодаря тому, что сигнал не был зарегистрирован европейским гравитационным детектором Virgo.

По задержкам, с которыми детекторы начали получать сигнал, стало ясно, что, вероятнее всего, источник находится в южном полушарии. Изначальная область, рекомендуемая для поиска, достигала 28 квадратных градусов, что эквивалентно сотням площадей Луны.

Следующим этапом было объединение данных гамма- и гравитационных обсерваторий воедино и поиск точного источника излучения. Так как ни гамма-телескопы, ни тем более гравитационные не позволяли найти требуемую точку с большой точностью, физики инициировали сразу несколько оптических поисков. Один из них — с помощью роботизированной системы телескопов «МАСТЕР», разработанной в ГАИШ МГУ.

Обнаружить среди тысяч возможных кандидатов нужную вспышку удалось чилийскому метровому телескопу Swope — почти через 11 часов после гравитационных волн. Астрономы зафиксировали новую светящуюся точку в галактике NGC 4993 в созвездии Гидры, ее яркость не превышала 17 звездной величины. Такой объект вполне доступен для наблюдения в полупрофессиональные телескопы.

NGC 4993 ESO

В течение примерно часа после этого, независимо от Swope, источник нашли еще четыре обсерватории, в том числе аргентинский телескоп сети «МАСТЕР».

После этого началась масштабная наблюдательная кампания, к которой присоединились телескопы Южной европейской обсерватории, «Хаббл», «Чандра», массив радиотелескопов VLA и множество других приборов — в сумме более 70 групп ученых наблюдали за развитием событий.

Через девять дней астрономам удалось получить изображение в рентгеновском диапазоне, а через 16 дней — в радиочастотном. К сожалению, через некоторое время Солнце приблизилось к галактике и в сентябре наблюдения стали невозможными.

Что стало причиной взрыва?

Такая характерная картина взрыва во многих электромагнитных диапазонах была предсказана и описана уже давно. Она соответствует столкновению двух нейтронных звезд — ультракомпактных объектов, состоящих из нейтронной материи.

По словам ученых, масса нейтронных звезд составляла 1,1 и 1,6 массы Солнца (сравнительно точно определена суммарная масса — около 2,7 массы Солнца). Первые гравитационные волны возникли, когда расстояние между объектами составляло 300 километров.

Большой неожиданностью стало небольшое расстояние от этой системы до Земли — около 130 миллионов световых лет.

Для сравнения, это всего в 50 раз дальше, чем от Земли до Туманности Андромеды, и почти на порядок меньше, чем расстояние от нашей планеты до черных дыр, столкновение которых фиксировали ранее LIGO и Virgo.

Кроме того, столкновение стало самым близким к Земле источником короткого гамма-всплеска.

Нейтронные звезды образуются при коллапсе гигантов и сверхгигантов с массами в 10–25 масс Солнца. Их рождение начинается так: на каком-то этапе масса ядра звезды превышает предел Чандрасекара — 1,4 солнечной массы.

В этот момент нарушается равновесие между гравитацией ядра, притягивающей внешнюю оболочку звезды, и давлением электронов, препятствующим сжатию. Звезда начинает сжиматься — коллапсировать.

Плотность и температура вещества в ядре резко увеличиваются, начинается захват электронов протонами и образование нейтронов (с выбросом нейтрино). Через некоторое время ядро уже практически полностью состоит из нейтронов.

Выбросы энергии от протон-электронных слияний разрывают оболочку звезды и уносят ее материал — происходит взрыв сверхновой. Все, что остается в результате — плотное нейтронное ядро с тонкой оболочкой.

Плотность нейтронной звезды огромна — она определяется лишь давлением вырожденных нейтронов и достигает 4–6×1017 килограмм на кубический метр. Одна капля нейтронной материи (0,030 миллилитра) весит больше десяти миллионов тонн — как сотни полностью загруженных товарных поездов. При этом характерные размеры нейтронных звезд невелики — около 10 километров в диаметре, такую звезду можно поместить внутрь Третьего транспортного кольца Москвы.

Кроме огромной плотности, нейтронные звезды обладают мощными магнитными полями, с индукцией от тысяч до триллионов тесла. Для сравнения, магнитное поле Земли не превышает 0,065 тесла.

Часть нейтронных звезд приобретают в результате взрыва большой угловой момент — так возникают пульсары.

На сегодняшний день нет единой картины того, как устроена нейтронная материя, не построено уравнение ее состояния.

«Нейтронию» приписываются такие свойства, как сверхпроводимость и сверхтекучесть.

Двойные нейтронные звезды известны с 1974 года — одну из таких систем открыли нобелевские лауреаты Рассел Халс и Джозеф Тейлор.

Однако до сих пор все известные двойные нейтронные звезды находились в нашей Галактике, а стабильность их орбит была достаточной, чтобы они не столкнулись в течение ближайших миллионов лет.

Новая пара звезд сблизилась настолько, что началось взаимодействие и стал развиваться процесс переноса вещества

Событие получило название килоновой. Дословно это означает, что яркость вспышки была примерно в тысячу раз мощнее, чем типичные вспышки новых звезд — двойных систем, в которых компактный компаньон перетягивает на себя материю.

Читайте также:  Вертолет ка-52к оснастили ракетой-«убийцей» кораблей

Расположение NGC 4993 Stellarium

Что все это значит?

Полный спектр собранных данных уже позволяет ученым называть событие краеугольным камнем будущей гравитационно-волновой астрономии.

По результатам обработки данных за два месяца было написано около 30 статей в крупных журналах: по семь в Nature и Science, а также работы в Astrophysical Journal Letters и других научных изданиях.

Соавторами одной из этих статей являются 4600 астрономов из различных коллабораций — это больше трети всех астрономов мира.

Вот ключевые вопросы, к ответам на которые ученым впервые удалось подойти по-настоящему.

Что запускает короткие гамма-всплески?

Гамма-всплески — это одни из самых высокоэнергетических явлений во Вселенной.

Мощность одного такого всплеска достаточна, чтобы за секунды выбросить в окружающее пространство столько же энергии, сколько Солнце генерирует за 10 миллионов лет.

Различают короткие и длинные гамма-всплески; при этом считается, что это различные по своему механизму явления. К примеру, источником длинных всплесков считаются коллапсы массивных звезд.

Источниками коротких гамма-всплесков предположительно являются слияния нейтронных звезд. Однако до сих пор прямых подтверждений этому не было. Новые наблюдения — самое веское на сегодняшний день доказательство существования этого механизма.

Эволюция яркости источника гравитационных волн Hubble

Откуда во Вселенной берутся золото и другие тяжелые элементы?

Нуклеосинтез — слияние ядер в звездах — позволяет получить огромный спектр химических элементов. Для легких ядер реакции слияния протекают с выделением энергии и в целом энергетически выгодны.

Для элементов, чья масса близка к массе железа, энергетический выигрыш оказывается уже не настолько большим. Из-за этого в звездах почти не образуются элементы тяжелее железа — исключением являются взрывы сверхновых.

Но их совершенно недостаточно, чтобы объяснить распространенность золота, лантанидов, урана и других тяжелых элементов во Вселенной.

В 1989 году физики предположили, что за это может отвечать r-нуклеосинтез в слияниях нейтронных звезд. Подробнее об этом можно прочитать в блоге астрофизика Марата Мусина. До сегодняшнего дня этот процесс был известен лишь в теории.

Спектральные исследования нового события показали отчетливые следы рождения тяжелых элементов. Так, благодаря спектрометрам Очень большого телескопа (VLT) и «Хаббла» астрономы обнаружили присутствие цезия, теллура, золота и платины.

Также есть свидетельства образования ксенона, иода и сурьмы. По оценкам физиков, в результате столкновения была выброшена общая масса легких и тяжелых элементов, эквивалентная 40 массам Юпитера.

Одного лишь золота, согласно теоретическим моделям, образуется около 10 масс Луны.

NGC 4993 ESO

Чему равна константа Хаббла?

Оценить экспериментально скорость расширения Вселенной можно с помощью специальных «стандартных свечей». Это объекты, для которых известна абсолютная яркость, а значит, по соотношению между абсолютной и видимой яркостью можно сделать вывод о том, как далеко они находятся.

Скорость расширения на данном расстоянии от наблюдателя определяется по доплеровскому смещению, например, линий водорода. Роль «стандартных свечей» играют, например, сверхновые Ia типа («взрывы» белых карликов) — кстати, именно на их выборке было доказано расширение Вселенной.

Константа Хаббла задает линейную зависимость скорости расширения Вселенной на данном расстоянии. Каждое независимое определение ее значения позволяет нам убедиться в справедливости принятой космологии.

Источники гравитационных волн тоже являются «стандартными свечами» (или, как их называют в статье, «сиренами»). По характеру гравитационных волн, которые они создают, можно независимо определить расстояние до них. Именно этим воспользовались астрономы в одной из новых работ.

Результат совпал с другими независимыми измерениями — на основе реликтового излучения и наблюдения за гравитационно-линзированными объектами. Константа примерно равна 62–82 километрам в секунду на мегапарсек. Это означает, что две галактики, удаленные на 3,2 миллиона световых лет, в среднем разбегаются со скоростью 70 километров в секунду.

Новые слияния нейтронных звезд помогут увеличить точность этой оценки.

NGC 4993 ESO

Как устроена гравитация?

Общепринятая на сегодняшний день общая теория относительности в точности предсказывает поведение гравитационных волн. Однако квантовая теория гравитации до сих пор не разработана.

Есть несколько гипотез о том, как она может быть устроена — это теоретические конструкции с большим количеством неизвестных параметров.

Одновременное наблюдение электромагнитного излучения и гравитационных волн позволит уточнить и сузить границы для этих параметров, а также отбросить некоторые гипотезы.

К примеру, тот факт, что гравитационные волны пришли за 1,7 секунды до гамма-квантов, подтверждает то, что они и правда распространяются со скоростью света. Кроме того, сама величина задержки может быть использована для проверки принципа эквивалентности, лежащего в основе ОТО.

Как устроены нейтронные звезды?

Мы знаем строение нейтронных звезд лишь в общих чертах. У них имеются кора из тяжелых элементов и нейтронное ядро — но, к примеру, нам до сих пор не известно уравнение состояния нейтронной материи в ядре. А от этого зависит, например, ответ на такой простой вопрос: что именно образовалось при столкновении, которое наблюдали астрономы?

Как и у белых карликов, у нейтронных звезд есть  понятие критической массы, при превышении которой может начаться коллапс. В зависимости от того, превзошла ли масса нового объекта критическую или нет, есть несколько сценариев дальнейшего развития событий. Если суммарная масса окажется слишком большой, то объект сразу коллапсирует в черную дыру.

Если масса немного меньше, то может возникнуть неравновесная быстровращающаяся нейтронная звезда, которая тоже, впрочем, со временем коллапсирует в черную дыру. Альтернативный вариант — образование магнетара, быстровращающейся нейтронной звезды с огромным магнитным полем.

По всей видимости, магнетар в столкновении не образовался — сопутствующее ему жесткое рентгеновское излучение зафиксировано не было.

По словам Владимира Липунова, руководителя сети «МАСТЕР», имеющихся сейчас данных недостаточно, чтобы выяснить, что же именно образовалось в результате слияния. Однако у астрономов уже есть ряд теорий, которые будут опубликованы в ближайшие дни. Возможно, из будущих слияний нейтронных звезд удастся определить искомую критическую массу.

В будущем мы ждем регистрации гравитационных волн и от других источников.

Во-первых, это непрерывные источники излучения, во-вторых, это стохастические волны, и самое интересное — это гравитационное реликтовое излучение. Но для этого надо значительно повысить чувствительность детекторов.

Кроме того, интересен поиск новых неизвестных источников».

Валерий Митрофанов,
профессор физического факультета МГУ им. М.В. Ломоносова

Владимир Королёв

Источник: https://nplus1.ru/material/2017/10/17/neutronic-gold

Нейтронные звёзды

Нейтронные звёзды — их существование было предсказано за многие годы до того, как возможности астрономии позволили обнаружить во Вселенной эти необычные объекты с уникальными свойствами.

В начале 30-х годов прошлого столетия, вскоре после того, как было расшифровано строение атомного ядра и экспериментально доказано существование «тяжелых» частиц — нейтронов, не несущих электрического заряда, выдающийся физик Лев Ландау (1908—1968) теоретически доказал, что не исключено обнаружение и крупных устойчивых объектов, в основном состоящих из нейтронов, — нейтронных звезд.

А в 1933 году немецкие астрофизики Вальтер Бааде и Франц Цвикки высказали предположение, что нейтронная звезда может образоваться в результате взрыва сверхновой. Но первые признаки существования загадочных небесных тел были обнаружены лишь в 1967 году — для этого понадобилось, чтобы радиоастрономия в своем развитии достигла серьезных успехов.

Что скрывалось за пульсарами

Открытие нейтронных звезд было полной неожиданностью, ведь расчеты показывали, что их светимость ничтожна, а размеры не превышают 10—30 км (диаметр рядового астероида в Солнечной системе). В 1967 г. британские радиоастрономы под руководством Э.

Хьюиша исследовали мерцающие источники радиоизлучения в различных участках неба и внезапно столкнулись с очень странными излучающими объектами, которые посылали мощные радиоимпульсы через строго определенные небольшие промежутки времени — сотые и даже тысячные доли секунды.

Причем промежутки между двумя импульсами никогда не превышали восьми секунд. Импульсы были настолько регулярными, что у ученых даже возникло, предположение, что им удалось зафиксировать сигналы внеземных цивилизаций.

Однако вскоре по всему небу обнаружилось несколько сот подобных источников радиоизлучения, а их природное происхождение больше не вызывало сомнения. Мигающие «радиомаяки» назвали пульсарами – нейтронными звездами.

Однако их природа оставалось загадкой — сигналы, казалось, возникают прямо в межзвездной пустоте и не связаны ни с какими крупными объектами — звездами или туманностями.

Недоумение исследователей рассеялось, когда один из пульсаров удалось отождествить со слабой звездочкой в центре Крабовидной туманности — остатков от взрыва сверхновой звезды, случившегося в 1054 г.

Наблюдения показали, что звезда меняет свою яркость, а также излучение в рентгеновском и гамма-диапазоне с такой же частотой, как и радиоизлучение. Однако реальные свойства нейтронных звезд все еще оставались загадкой.

Гравитационный процесс

Вот тут-то исследователи и вспомнили о явлении гравитационного коллапса, которое теоретически описали Бааде и Цвикки. Это не что иное, как катастрофическое сжатие массивной звезды, подобное тому, которое происходит при образовании белых карликов.

Но если белые карлики образуются из «состарившихся» звезд с небольшой массой, в случае с массивными звездами дело не ограничивается образованием в ядре светила вырожденного газа.

В условиях сверхгигантских давлений и температур сжатие затрагивает не только атомы, но и частицы, из которых состоят эти атомы. Практически все частицы превращаются в электрически нейтральные нейтроны, которые могут располагаться очень близко друг к другу, буквально «плечом к плечу».

При этом плотность вещества возрастает в тысячи раз даже по сравнению с белыми карликами — звезда, обладающая массой в 20 солнечных, «упаковывается» в объем шара диаметром 10—15 км!

Рай для физика

Нетрудно представить, что такое космическое тело может обладать набором свойств, которые способны привести в восторг любого ученого-физика. Ведь получить их даже в самой современной лаборатории практически невозможно.

В недрах нейтронной звезды должны наблюдаться такие явления и свойства материи, как сверхтекучесть, сверхпроводимость, сверхсильные магнитные поля, нейтринное излучение, особые эффекты, связанные с теорией относительности. В них могут существовать недоступные исследователями формы материи — жидкости, состоящие исключительно из элементарных частиц, кварковое вещество и многое другое.

Плотность нейтронных звезд достигает 1014 граммов на кубический сантиметр, а мощность их магнитного поля в миллиарды раз превышает мощность магнитного поля Земли.

При этом нейтронные звезды стремительно вращаются, чем и объясняется возникновение радиоизлучения огромной мощности.

Оно вырывается мощными потоками из областей магнитных полюсов «странной» звезды, но поскольку магнитные полюса не лежат на оси вращения, струя излучения описывает в окружающем пространстве конус.

Если этот конус в своем движении «задевает» Землю, радиотелескопы фиксируют пульсар. Частота его импульсов будет соответствовать скорости вращения нейтронной звезды.

А что произойдет, если в состоянии гравитационного коллапса окажется звезда с массой больше той, которая является предельной для нейтронной звезды? Тогда она не сможет остановиться на стадии нейтронной звезды, и сжатие будет продолжаться до тех пор, пока вещество не достигнет еще более удивительного состояния — звезда превратится в «черную дыру».

Гравитация такого объекта станет настолько мощной, что даже скорости света будет недостаточно, чтобы покинуть его поверхность. Поэтому «черная дыра» не «отпускает» от себя никакие виды излучения, а значит и увидеть ее невозможно даже с помощью самых совершенных приборов.

Обнаружить «черную дыру» удается только опосредованно — например, по мощному жесткому излучению, которое испускает падающий на нее газ из окружающего пространства.

Источник: http://istorii-x.ru/tajny-vselennoj/321-nejtronnye-zvyozdy.html

Ссылка на основную публикацию